Abstract

We report on a communication link demonstration in a 1 km simulated atmospheric turbulent channel with a wide-spectral mode-locking fiber laser. Wide-spectral beams are part of the supercontinuum, which is generated from pumping a dispersion-shifted fiber by an active mode-locked fiber laser. In addition, the propagation effects of wide-spectral beams were investigated experimentally in a simulated atmosphere channel. The characteristics of bit error rate and eye pattern before and after turbulence were analyzed, respectively. The experimental results showed that the sensitivity of the whole link reaches 40  dBm. The scintillation index of free-space optical communication between wide-spectral partially coherent and narrow-spectral coherent beams was compared, which indicates that the wide-spectral partially coherent optical communication link is more resistant to atmospheric turbulence. We experimentally verified that the scintillation index of wide-spectral carriers is dependent on coherent degree rather than spectral width.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scintillation and bit error rate analysis of a phase-locked partially coherent flat-topped array laser beam in oceanic turbulence

Masoud Yousefi, Fatemeh Dabbagh Kashani, Shole Golmohammady, and Ahmad Mashal
J. Opt. Soc. Am. A 34(12) 2126-2137 (2017)

Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels

Antonio García-Zambrana, Carmen Castillo-Vázquez, and Beatriz Castillo-Vázquez
Opt. Express 18(6) 5356-5366 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. Shirai, A. Dogariu, and E. Wolf, J. Opt. Soc. Am. A 20, 1094 (2003).
    [Crossref]
  2. O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
    [Crossref]
  3. X. Qian, W. Zhu, and R. Rao, Opt. Express 17, 3782 (2009).
    [Crossref]
  4. D. K. Borah and D. G. Voelz, Opt. Express 18, 20746 (2010).
    [Crossref]
  5. I. E. Lee, Z. Ghassemlooy, and W. P. Ng, Appl. Opt. 55, 1 (2016).
    [Crossref]
  6. J. C. Ricklin and F. M. Davidson, J. Opt. Soc. Am. A 19, 1794 (2002).
    [Crossref]
  7. I. E. Lee, Z. Ghassemlooy, and W. P. Ng, in IEEE International Conference on Communications Workshops (ICC) (2016).
  8. M. A. Vorontsov, V. V. Dudorov, and M. O. Zyryanova, Atmos. Ocean. Opt. 26, 185 (2013).
  9. J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002).
    [Crossref]
  10. I. Zeylikovich and R. R. Alfano, Appl. Phys. B 77, 265 (2003).
    [Crossref]
  11. I. Zeylikovich, V. Kartazaev, and R. R. Alfano, J. Opt. Soc. Am. B 22, 1453 (2005).
    [Crossref]
  12. N. Nishizawa, Opt. Fiber Technol. 18, 394 (2012).
    [Crossref]
  13. F. Wang, X. Liu, Y. Yuan, and Y. Cai, Opt. Lett. 38, 1814 (2013).
    [Crossref]
  14. V. A. Semenova, V. A. Tsypkin, S. E. Puilin, and V. G. Bespalov, J. Phys. 536, 012027 (2014).
    [Crossref]
  15. T. Morioka and H. Takara, Electron. Lett. 32, 906 (1996).
    [Crossref]
  16. H. Takara, Opt. Photon. News 13(3), 48 (2002).
    [Crossref]
  17. P. Polynkin, A. Peleg, and L. Klein, Opt. Lett. 32, 885 (2007).
    [Crossref]
  18. K. Xu, R. Wang, and Y. Dai, Laser Phys. Lett. 10, 055108 (2013).
    [Crossref]
  19. X. Liu, T. Wang, and X. Zhang, IEEE Photon. J. 10, 7902310 (2018).
    [Crossref]
  20. R. S. Lawrence and J. W. Strohbeln, Proc. IEEE 58, 1523 (1970).
    [Crossref]
  21. S. F. Clifford, J. Opt. Soc. Am. 61, 1285 (1971).
    [Crossref]
  22. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [Crossref]
  23. F. Lu and W. H. Knox, Opt. Express 12, 347 (2004).
    [Crossref]
  24. C. Chen, H. Yang, and S. Tong, Appl. Phys. B 111, 373 (2013).
    [Crossref]

2018 (1)

X. Liu, T. Wang, and X. Zhang, IEEE Photon. J. 10, 7902310 (2018).
[Crossref]

2016 (1)

2014 (1)

V. A. Semenova, V. A. Tsypkin, S. E. Puilin, and V. G. Bespalov, J. Phys. 536, 012027 (2014).
[Crossref]

2013 (4)

F. Wang, X. Liu, Y. Yuan, and Y. Cai, Opt. Lett. 38, 1814 (2013).
[Crossref]

M. A. Vorontsov, V. V. Dudorov, and M. O. Zyryanova, Atmos. Ocean. Opt. 26, 185 (2013).

K. Xu, R. Wang, and Y. Dai, Laser Phys. Lett. 10, 055108 (2013).
[Crossref]

C. Chen, H. Yang, and S. Tong, Appl. Phys. B 111, 373 (2013).
[Crossref]

2012 (1)

N. Nishizawa, Opt. Fiber Technol. 18, 394 (2012).
[Crossref]

2010 (1)

2009 (1)

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

2005 (1)

2004 (2)

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
[Crossref]

F. Lu and W. H. Knox, Opt. Express 12, 347 (2004).
[Crossref]

2003 (2)

T. Shirai, A. Dogariu, and E. Wolf, J. Opt. Soc. Am. A 20, 1094 (2003).
[Crossref]

I. Zeylikovich and R. R. Alfano, Appl. Phys. B 77, 265 (2003).
[Crossref]

2002 (3)

1996 (1)

T. Morioka and H. Takara, Electron. Lett. 32, 906 (1996).
[Crossref]

1971 (1)

1970 (1)

R. S. Lawrence and J. W. Strohbeln, Proc. IEEE 58, 1523 (1970).
[Crossref]

Alfano, R. R.

Andrews, L. C.

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
[Crossref]

Bespalov, V. G.

V. A. Semenova, V. A. Tsypkin, S. E. Puilin, and V. G. Bespalov, J. Phys. 536, 012027 (2014).
[Crossref]

Borah, D. K.

Cai, Y.

Chen, C.

C. Chen, H. Yang, and S. Tong, Appl. Phys. B 111, 373 (2013).
[Crossref]

Clifford, S. F.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002).
[Crossref]

Dai, Y.

K. Xu, R. Wang, and Y. Dai, Laser Phys. Lett. 10, 055108 (2013).
[Crossref]

Davidson, F. M.

Dogariu, A.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

J. M. Dudley and S. Coen, Opt. Lett. 27, 1180 (2002).
[Crossref]

Dudorov, V. V.

M. A. Vorontsov, V. V. Dudorov, and M. O. Zyryanova, Atmos. Ocean. Opt. 26, 185 (2013).

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Ghassemlooy, Z.

I. E. Lee, Z. Ghassemlooy, and W. P. Ng, Appl. Opt. 55, 1 (2016).
[Crossref]

I. E. Lee, Z. Ghassemlooy, and W. P. Ng, in IEEE International Conference on Communications Workshops (ICC) (2016).

Kartazaev, V.

Klein, L.

Knox, W. H.

Korotkova, O.

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
[Crossref]

Lawrence, R. S.

R. S. Lawrence and J. W. Strohbeln, Proc. IEEE 58, 1523 (1970).
[Crossref]

Lee, I. E.

I. E. Lee, Z. Ghassemlooy, and W. P. Ng, Appl. Opt. 55, 1 (2016).
[Crossref]

I. E. Lee, Z. Ghassemlooy, and W. P. Ng, in IEEE International Conference on Communications Workshops (ICC) (2016).

Liu, X.

X. Liu, T. Wang, and X. Zhang, IEEE Photon. J. 10, 7902310 (2018).
[Crossref]

F. Wang, X. Liu, Y. Yuan, and Y. Cai, Opt. Lett. 38, 1814 (2013).
[Crossref]

Lu, F.

Morioka, T.

T. Morioka and H. Takara, Electron. Lett. 32, 906 (1996).
[Crossref]

Ng, W. P.

I. E. Lee, Z. Ghassemlooy, and W. P. Ng, Appl. Opt. 55, 1 (2016).
[Crossref]

I. E. Lee, Z. Ghassemlooy, and W. P. Ng, in IEEE International Conference on Communications Workshops (ICC) (2016).

Nishizawa, N.

N. Nishizawa, Opt. Fiber Technol. 18, 394 (2012).
[Crossref]

Peleg, A.

Phillips, R. L.

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
[Crossref]

Polynkin, P.

Puilin, S. E.

V. A. Semenova, V. A. Tsypkin, S. E. Puilin, and V. G. Bespalov, J. Phys. 536, 012027 (2014).
[Crossref]

Qian, X.

Rao, R.

Ricklin, J. C.

Semenova, V. A.

V. A. Semenova, V. A. Tsypkin, S. E. Puilin, and V. G. Bespalov, J. Phys. 536, 012027 (2014).
[Crossref]

Shirai, T.

Strohbeln, J. W.

R. S. Lawrence and J. W. Strohbeln, Proc. IEEE 58, 1523 (1970).
[Crossref]

Takara, H.

H. Takara, Opt. Photon. News 13(3), 48 (2002).
[Crossref]

T. Morioka and H. Takara, Electron. Lett. 32, 906 (1996).
[Crossref]

Tong, S.

C. Chen, H. Yang, and S. Tong, Appl. Phys. B 111, 373 (2013).
[Crossref]

Tsypkin, V. A.

V. A. Semenova, V. A. Tsypkin, S. E. Puilin, and V. G. Bespalov, J. Phys. 536, 012027 (2014).
[Crossref]

Voelz, D. G.

Vorontsov, M. A.

M. A. Vorontsov, V. V. Dudorov, and M. O. Zyryanova, Atmos. Ocean. Opt. 26, 185 (2013).

Wang, F.

Wang, R.

K. Xu, R. Wang, and Y. Dai, Laser Phys. Lett. 10, 055108 (2013).
[Crossref]

Wang, T.

X. Liu, T. Wang, and X. Zhang, IEEE Photon. J. 10, 7902310 (2018).
[Crossref]

Wolf, E.

Xu, K.

K. Xu, R. Wang, and Y. Dai, Laser Phys. Lett. 10, 055108 (2013).
[Crossref]

Yang, H.

C. Chen, H. Yang, and S. Tong, Appl. Phys. B 111, 373 (2013).
[Crossref]

Yuan, Y.

Zeylikovich, I.

Zhang, X.

X. Liu, T. Wang, and X. Zhang, IEEE Photon. J. 10, 7902310 (2018).
[Crossref]

Zhu, W.

Zyryanova, M. O.

M. A. Vorontsov, V. V. Dudorov, and M. O. Zyryanova, Atmos. Ocean. Opt. 26, 185 (2013).

Appl. Opt. (1)

Appl. Phys. B (2)

I. Zeylikovich and R. R. Alfano, Appl. Phys. B 77, 265 (2003).
[Crossref]

C. Chen, H. Yang, and S. Tong, Appl. Phys. B 111, 373 (2013).
[Crossref]

Atmos. Ocean. Opt. (1)

M. A. Vorontsov, V. V. Dudorov, and M. O. Zyryanova, Atmos. Ocean. Opt. 26, 185 (2013).

Electron. Lett. (1)

T. Morioka and H. Takara, Electron. Lett. 32, 906 (1996).
[Crossref]

IEEE Photon. J. (1)

X. Liu, T. Wang, and X. Zhang, IEEE Photon. J. 10, 7902310 (2018).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. (1)

V. A. Semenova, V. A. Tsypkin, S. E. Puilin, and V. G. Bespalov, J. Phys. 536, 012027 (2014).
[Crossref]

Laser Phys. Lett. (1)

K. Xu, R. Wang, and Y. Dai, Laser Phys. Lett. 10, 055108 (2013).
[Crossref]

Opt. Eng. (1)

O. Korotkova, L. C. Andrews, and R. L. Phillips, Opt. Eng. 43, 330 (2004).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

N. Nishizawa, Opt. Fiber Technol. 18, 394 (2012).
[Crossref]

Opt. Lett. (3)

Opt. Photon. News (1)

H. Takara, Opt. Photon. News 13(3), 48 (2002).
[Crossref]

Proc. IEEE (1)

R. S. Lawrence and J. W. Strohbeln, Proc. IEEE 58, 1523 (1970).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Other (1)

I. E. Lee, Z. Ghassemlooy, and W. P. Ng, in IEEE International Conference on Communications Workshops (ICC) (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Experimental setup of an optical communication system with wide-spectrum carriers. SG, signal generation; EDF, erbium-doped fibers; LD, laser diodes; PC, polarization controller; WDM, 1480/1550 nm wavelength-division multiplexer; TF, tunable filter; PD, photodetector; ODL, optical delay lines; VGA, variable gain amplifier; OSC, oscilloscope; EDFA, erbium-doped fiber amplifier; ISO, isolator; DSF, dispersion-shifted fiber; AWG, arbitrary waveform generator; MZM, Mach–Zehnder modulator; RF, radio frequency signal; CWDM, coarse wavelength division multiplexing; AT, atmospheric turbulence channel; LPF, low-pass filter; EA, electric amplifier; CDR, clock recovery.
Fig. 2.
Fig. 2. (a) Wide spectrum with repetition of 1, 2, 3, 4 GHz, filtered spectrum by CWDM and narrow-spectrum beams. (b) Pulses before and after broadened spectrum and OOK modulation with PRBS.
Fig. 3.
Fig. 3. (a) Frequency spectrum fitting curve of the simulated atmospheric turbulence. (b) Sectional view of atmospheric turbulence simulation device: 1. Heating plate, 2. cooling plate, 3. circulation cooling pipe, 4. turbulence generating region, 5. temperature compensation region, 6. heat-resistance boards, 7. asbestos board, 8. optical transmission window.
Fig. 4.
Fig. 4. Curves of supercontinuum and the degree of coherence (g12) in the range of 1450–1640 nm.
Fig. 5.
Fig. 5. Scintillation index in different coherent degree conditions. (a) 20 nm wide-spectral carriers with partial coherence and 0.15 nm narrow-spectral coherent carriers of 1550 nm. (b) 20 nm wide-spectral carriers with partial coherence and 0.15 nm narrow-spectral coherent carriers of 1570 nm.
Fig. 6.
Fig. 6. Scintillation index of wide-spectral carriers in different spectrum widths.
Fig. 7.
Fig. 7. Eye pattern of modulated wide-spectral signals at the rate of 4 Gbit/s before (left) and after (right) the turbulent channel.
Fig. 8.
Fig. 8. BER curves of communication link based on wide-spectrum carriers (a) at different rates in the same turbulent case. BTB, back-to-back signals. (b) Under different turbulence intensity at rate of 4 Gbit/s.