Abstract

A new fiber in-line Mach–Zehnder interferometer based on a straight waveguide along the central axis of the no-core fiber sandwiched between single mode fibers is fabricated by a femtosecond laser. The device can be used for high temperature sensing with a sensitivity of 278.86  pm/°C and for bending sensing with a sensitivity of 0.28  nm/m1. The high mechanical strength, simple fabrication, and precisely controlled free spectral range make the device attractive for potential applications in high temperature monitoring.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber inline Mach–Zehnder interferometer based on femtosecond laser inscribed waveguides

W. W. Li, W. P. Chen, D. N. Wang, Z. K. Wang, and Ben Xu
Opt. Lett. 42(21) 4438-4441 (2017)

Fiber in-line Mach-Zehnder interferometer based on a pair of short sections of waveguide

W. W. Li, D. N. Wang, Z. K. Wang, and Ben Xu
Opt. Express 26(9) 11496-11502 (2018)

Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity

Ying Wang, Minwei Yang, D. N. Wang, Shujing Liu, and Peixiang Lu
J. Opt. Soc. Am. B 27(3) 370-374 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
    [Crossref]
  2. D. Grobnic, S. J. Mihailov, and C. W. Smelser, J. Lightwave Technol. 25, 1996 (2007).
    [Crossref]
  3. L. A. Fernandes, J. R. Grenier, P. V. S. Marques, J. S. Aitchison, and P. R. Herman, J. Lightwave Technol. 31, 3563 (2013).
    [Crossref]
  4. K. K. C. Lee, A. Mariampillai, M. Haque, B. A. Standish, V. X. D. Yang, and P. R. Herman, Opt. Express 21, 24076 (2013).
    [Crossref]
  5. C. Waltermann, A. Doering, M. Köhring, M. Angelmahr, and W. Schade, Opt. Lett. 40, 3109 (2015).
    [Crossref]
  6. J. R. Grenier, L. A. Fernandes, and P. R. Herman, Opt. Express 23, 16760 (2015).
    [Crossref]
  7. C. Lin, C. Liao, J. Wang, J. He, Y. Wang, Z. Li, T. Yang, F. Zhu, K. Yang, Z. Zhang, and Y. Wang, Opt. Lett. 42, 1684 (2017).
    [Crossref]
  8. H. Y. Choi, M. J. Kim, and B. H. Lee, Opt. Express 15, 5711 (2007).
    [Crossref]
  9. Y. Jung, S. Lee, B. H. Lee, and K. Oh, Opt. Lett. 33, 2934 (2008).
    [Crossref]
  10. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, Opt. Express 16, 11369 (2008).
    [Crossref]
  11. Z. Tao, D. Wu, M. Liu, and D.-W. Duan, Sensors 12, 10430 (2012).
    [Crossref]
  12. R. Yang, Y.-S. Yu, Y. Xue, C. Chen, Q.-D. Chen, and H.-B. Sun, Opt. Lett. 36, 4482 (2011).
    [Crossref]
  13. R. Yang, Y.-S. Yu, C. Chen, Y. Xue, X.-L. Zhang, J.-C. Guo, C. Wang, F. Zhu, B.-L. Zhang, Q.-D. Chen, and H.-B. Sun, J. Lightwave Technol. 30, 3126 (2012).
    [Crossref]
  14. T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, Opt. Lett. 37, 5082 (2012).
    [Crossref]
  15. T. Y. Hu and D. N. Wang, Opt. Lett. 38, 3036 (2013).
    [Crossref]
  16. X. Dong, Z. Xie, Y. Song, K. Yin, D. Chu, and J. Duan, Chin. Opt. Lett. 15, 090602 (2017).
    [Crossref]
  17. Y.-J. Rao, D.-W. Duan, Y.-E. Fan, T. Ke, and M. Xu, J. Lightwave Technol. 28, 1530 (2010).
    [Crossref]
  18. R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.
  19. L. Polz, B. Hopf, A. Jarsen, M. Eitzenberger, M. Lindner, H. Bartelt, and J. Roths, J. Lightwave Technol. 34, 4550 (2016).
    [Crossref]
  20. Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, Opt. Express 16, 21239 (2008).
    [Crossref]

2017 (2)

2016 (1)

2015 (2)

2013 (3)

2012 (3)

2011 (1)

2010 (1)

2008 (3)

2007 (2)

1996 (1)

Aitchison, J. S.

Angelmahr, M.

Bartelt, H.

Canning, J.

R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.

Chen, C.

Chen, K. P.

R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.

Chen, Q.-D.

Chen, R.

R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.

Chen, T.

R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.

Choi, H. Y.

Chu, D.

Chung, Y.

Cook, K.

R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.

Davis, K. M.

Doering, A.

Dong, X.

Duan, D.-W.

Duan, J.

Eitzenberger, M.

Fan, Y.-E.

Fernandes, L. A.

Grattan, K. T. V.

Grenier, J. R.

Grobnic, D.

D. Grobnic, S. J. Mihailov, and C. W. Smelser, J. Lightwave Technol. 25, 1996 (2007).
[Crossref]

R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.

Guo, J.-C.

Haque, M.

He, J.

Herman, P. R.

Hirao, K.

Hopf, B.

Hu, T. Y.

Hwang, D.

Jarsen, A.

Jewart, C.

R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.

Jung, Y.

Ke, T.

Kim, M. J.

Köhring, M.

Lee, B. H.

Lee, K. K. C.

Lee, S.

Li, Y.

Li, Z.

Liao, C.

Liao, C. R.

Lin, C.

Lindner, M.

Liu, M.

Z. Tao, D. Wu, M. Liu, and D.-W. Duan, Sensors 12, 10430 (2012).
[Crossref]

Mariampillai, A.

Marques, P. V. S.

Mihailov, S. J.

D. Grobnic, S. J. Mihailov, and C. W. Smelser, J. Lightwave Technol. 25, 1996 (2007).
[Crossref]

R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.

Miura, K.

Moon, D. S.

Moon, S.

Nguyen, L. V.

Oh, K.

Polz, L.

Rao, Y.-J.

Roths, J.

Schade, W.

Smelser, C. W.

Song, Y.

Standish, B. A.

Sugimoto, N.

Sun, H.-B.

Sun, T.

Tao, Z.

Z. Tao, D. Wu, M. Liu, and D.-W. Duan, Sensors 12, 10430 (2012).
[Crossref]

Waltermann, C.

Wang, C.

Wang, D. N.

Wang, J.

Wang, Q.

R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.

Wang, Y.

Wu, D.

Z. Tao, D. Wu, M. Liu, and D.-W. Duan, Sensors 12, 10430 (2012).
[Crossref]

Xie, Z.

Xu, M.

Xue, Y.

Yang, K.

Yang, R.

Yang, T.

Yang, V. X. D.

Yin, K.

Yu, Y.-S.

Zhang, B.

R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.

Zhang, B.-L.

Zhang, X.-L.

Zhang, Z.

Zhu, F.

Chin. Opt. Lett. (1)

J. Lightwave Technol. (5)

Opt. Express (5)

Opt. Lett. (7)

Sensors (1)

Z. Tao, D. Wu, M. Liu, and D.-W. Duan, Sensors 12, 10430 (2012).
[Crossref]

Other (1)

R. Chen, T. Chen, Q. Wang, C. Jewart, B. Zhang, K. Cook, J. Canning, D. Grobnic, S. J. Mihailov, and K. P. Chen, in Advanced Photonics Congress, OSA Technical Digest (Optical Society of America, 2012), paper BTu4E.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of the fiber MZI proposed.
Fig. 2.
Fig. 2. Femtosecond laser inscription of optical waveguide in SMF–NCF–SMF with a high NA oil-immersion lens.
Fig. 3.
Fig. 3. Transmission spectrum and spatial frequency spectra of the MZI devices with different NCF lengths.
Fig. 4.
Fig. 4. Simulated and measured transmission spectrum of the MZI devices with NCF length of 3.1 mm.
Fig. 5.
Fig. 5. Schematic of the experimental system diagram for (a) temperature test, (b) bending test, and (c) strain test.
Fig. 6.
Fig. 6. Response of the MZI device to temperature. (a) Transmission spectra at different temperatures. (b) Resonant wavelength shift versus temperature.
Fig. 7.
Fig. 7. Response of the MZI device to the high temperature. (a) Transmission spectra at different temperatures. (b) Resonant wavelength shift versus temperature.
Fig. 8.
Fig. 8. Response of the MZI device to bending C. (a) Spectral evolution of resonant wavelength to bending C. (b) Wavelength shifts versus bending C.
Fig. 9.
Fig. 9. Response of the MZI device to strain. (a) Transmission spectra at different strains. (b) Resonant wavelength shift versus strain.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I=I1+I2+2I1I2cos[2π[2(nwgSMFnco)x+(nwgNCFnNCF)L]λ],
λdip=2[2(nwgSMFnco)x+(nwgNCFnNCF)L]2m+1.
FSR=λ22(nwgSMFnco)x+(nwgNCFnNCF)L.
C=2d/(d2+L2),