Abstract

We report for the first time on-chip integration of III-nitride voltage-controlled light emitters with visible and ultraviolet (UV) photodiodes (PDs). InGaN/GaN and AlGaN/GaN heterostructures were grown in specific regions by selective-area epitaxy, allowing monolithic integration of versatile devices including visible light emitting diodes (LEDs), visible-light PDs, AlGaN/GaN high electron mobility transistors (HEMTs), and UV-light Schottky barrier (SB) PDs. A serial connection between the LED and HEMT through the epitaxial layers enables a three-terminal voltage-controlled light emitter (HEMT-LED), efficiently converting voltage-controlled signals into visible-light signals that can be coupled into an adjacent visible-light PD generating electrical signals. While the integrated blue HEMT-LED and PD transmits signals carried by visible light, the visible-blind SB-PD on a chip receives external UV light control signals with negligible interference from the on-chip visible-light source. This integration scheme can be extended to open an avenue for developing a variety of applications, such as smart lighting, on-chip optical interconnect, optical wireless communication, and opto-isolators.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic integration of nitride light emitting diodes and photodetectors for bi-directional optical communication

Zhenyu Jiang, Mahmoud R. M. Atalla, Guanjun You, Li Wang, Xiaoyun Li, Jie Liu, Asim M. Elahi, Lai Wei, and Jian Xu
Opt. Lett. 39(19) 5657-5660 (2014)

Monolithic III-nitride photonic integration toward multifunctional devices

Xumin Gao, Zheng Shi, Yan Jiang, Shuai Zhang, Chuan Qin, Jialei Yuan, Yuhuai Liu, Peter Grünberg, and Yongjin Wang
Opt. Lett. 42(23) 4853-4856 (2017)

GaN-based ultraviolet light-emitting diodes with AlN/GaN/InGaN multiple quantum wells

Hung-Ming Chang, Wei-Chih Lai, Wei-Shou Chen, and Shoou-Jinn Chang
Opt. Express 23(7) A337-A345 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Cai, Y. Wang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, Opt. Express 24, 6004 (2016).
    [Crossref]
  2. Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, Appl. Phys. Lett. 108, 162102 (2016).
    [Crossref]
  3. Z. Jiang, M. R. M. Atala, G. You, L. Wang, X. Li, J. Liu, A. M. Elahi, and J. Xu, Opt. Lett. 39, 5657 (2014).
    [Crossref]
  4. F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, Microelectron. Eng. 90, 33 (2012).
    [Crossref]
  5. Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, Appl. Phys. Lett. 102, 192107 (2013).
    [Crossref]
  6. Y. Lee, Z. Yang, P. Chen, Y. Hsieh, Y. Yao, M. Liao, M. Lee, M. Wang, and J. Hwang, Opt. Express 22, A1589 (2014).
    [Crossref]
  7. Z. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 35, 330 (2014).
    [Crossref]
  8. Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, Appl. Phys. Lett. 104, 091103 (2014).
    [Crossref]
  9. C. Liu, Z. Liu, T. Huang, J. Ma, and K. M. Lau, J. Cryst. Growth 414, 243 (2015).
    [Crossref]
  10. C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, Appl. Phys. Lett. 106, 181110 (2015).
    [Crossref]
  11. C. Liu, Y. Cai, H. Jiang, and K. M. Lau, J. Electron. Mater. 45, 2092 (2016).
    [Crossref]
  12. C. Liu, Y. Cai, X. Zou, and K. M. Lau, IEEE Photon. Technol. Lett. 28, 1130 (2016).
    [Crossref]
  13. Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Solid-State Electron. 41, 1569 (1997).
    [Crossref]
  14. Y. Cai, X. Zou, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 39, 224 (2018).
    [Crossref]

2018 (1)

Y. Cai, X. Zou, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 39, 224 (2018).
[Crossref]

2016 (4)

C. Liu, Y. Cai, H. Jiang, and K. M. Lau, J. Electron. Mater. 45, 2092 (2016).
[Crossref]

C. Liu, Y. Cai, X. Zou, and K. M. Lau, IEEE Photon. Technol. Lett. 28, 1130 (2016).
[Crossref]

W. Cai, Y. Wang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, Opt. Express 24, 6004 (2016).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, Appl. Phys. Lett. 108, 162102 (2016).
[Crossref]

2015 (2)

C. Liu, Z. Liu, T. Huang, J. Ma, and K. M. Lau, J. Cryst. Growth 414, 243 (2015).
[Crossref]

C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, Appl. Phys. Lett. 106, 181110 (2015).
[Crossref]

2014 (4)

Y. Lee, Z. Yang, P. Chen, Y. Hsieh, Y. Yao, M. Liao, M. Lee, M. Wang, and J. Hwang, Opt. Express 22, A1589 (2014).
[Crossref]

Z. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 35, 330 (2014).
[Crossref]

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, Appl. Phys. Lett. 104, 091103 (2014).
[Crossref]

Z. Jiang, M. R. M. Atala, G. You, L. Wang, X. Li, J. Liu, A. M. Elahi, and J. Xu, Opt. Lett. 39, 5657 (2014).
[Crossref]

2013 (1)

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, Appl. Phys. Lett. 102, 192107 (2013).
[Crossref]

2012 (1)

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, Microelectron. Eng. 90, 33 (2012).
[Crossref]

1997 (1)

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Solid-State Electron. 41, 1569 (1997).
[Crossref]

Atala, M. R. M.

Cai, W.

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, Appl. Phys. Lett. 108, 162102 (2016).
[Crossref]

W. Cai, Y. Wang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, Opt. Express 24, 6004 (2016).
[Crossref]

Cai, Y.

Y. Cai, X. Zou, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 39, 224 (2018).
[Crossref]

C. Liu, Y. Cai, H. Jiang, and K. M. Lau, J. Electron. Mater. 45, 2092 (2016).
[Crossref]

C. Liu, Y. Cai, X. Zou, and K. M. Lau, IEEE Photon. Technol. Lett. 28, 1130 (2016).
[Crossref]

C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, Appl. Phys. Lett. 106, 181110 (2015).
[Crossref]

Chen, P.

Chow, T. P.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, Appl. Phys. Lett. 102, 192107 (2013).
[Crossref]

Denbaars, S. P.

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Solid-State Electron. 41, 1569 (1997).
[Crossref]

Detchprohm, T.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, Appl. Phys. Lett. 102, 192107 (2013).
[Crossref]

Elahi, A. M.

Gao, X.

W. Cai, Y. Wang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, Opt. Express 24, 6004 (2016).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, Appl. Phys. Lett. 108, 162102 (2016).
[Crossref]

Hsieh, Y.

Huang, T.

C. Liu, Z. Liu, T. Huang, J. Ma, and K. M. Lau, J. Cryst. Growth 414, 243 (2015).
[Crossref]

Z. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 35, 330 (2014).
[Crossref]

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, Appl. Phys. Lett. 104, 091103 (2014).
[Crossref]

Hwang, J.

Iliopoulos, E.

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, Microelectron. Eng. 90, 33 (2012).
[Crossref]

Jiang, H.

C. Liu, Y. Cai, H. Jiang, and K. M. Lau, J. Electron. Mater. 45, 2092 (2016).
[Crossref]

Jiang, Z.

Kalaitzakis, F. G.

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, Microelectron. Eng. 90, 33 (2012).
[Crossref]

Kapolnek, D.

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Solid-State Electron. 41, 1569 (1997).
[Crossref]

Karlicek, R. F.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, Appl. Phys. Lett. 102, 192107 (2013).
[Crossref]

Keller, B. P.

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Solid-State Electron. 41, 1569 (1997).
[Crossref]

Keller, S.

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Solid-State Electron. 41, 1569 (1997).
[Crossref]

Konstantinidis, G.

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, Microelectron. Eng. 90, 33 (2012).
[Crossref]

Kozodoy, P.

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Solid-State Electron. 41, 1569 (1997).
[Crossref]

Lau, K. M.

Y. Cai, X. Zou, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 39, 224 (2018).
[Crossref]

C. Liu, Y. Cai, H. Jiang, and K. M. Lau, J. Electron. Mater. 45, 2092 (2016).
[Crossref]

C. Liu, Y. Cai, X. Zou, and K. M. Lau, IEEE Photon. Technol. Lett. 28, 1130 (2016).
[Crossref]

C. Liu, Z. Liu, T. Huang, J. Ma, and K. M. Lau, J. Cryst. Growth 414, 243 (2015).
[Crossref]

C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, Appl. Phys. Lett. 106, 181110 (2015).
[Crossref]

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, Appl. Phys. Lett. 104, 091103 (2014).
[Crossref]

Z. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 35, 330 (2014).
[Crossref]

Lee, M.

Lee, Y.

Li, X.

Li, Z.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, Appl. Phys. Lett. 102, 192107 (2013).
[Crossref]

Liao, M.

Liu, C.

Y. Cai, X. Zou, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 39, 224 (2018).
[Crossref]

C. Liu, Y. Cai, H. Jiang, and K. M. Lau, J. Electron. Mater. 45, 2092 (2016).
[Crossref]

C. Liu, Y. Cai, X. Zou, and K. M. Lau, IEEE Photon. Technol. Lett. 28, 1130 (2016).
[Crossref]

C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, Appl. Phys. Lett. 106, 181110 (2015).
[Crossref]

C. Liu, Z. Liu, T. Huang, J. Ma, and K. M. Lau, J. Cryst. Growth 414, 243 (2015).
[Crossref]

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, Appl. Phys. Lett. 104, 091103 (2014).
[Crossref]

Z. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 35, 330 (2014).
[Crossref]

Liu, J.

Liu, Z.

C. Liu, Z. Liu, T. Huang, J. Ma, and K. M. Lau, J. Cryst. Growth 414, 243 (2015).
[Crossref]

C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, Appl. Phys. Lett. 106, 181110 (2015).
[Crossref]

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, Appl. Phys. Lett. 104, 091103 (2014).
[Crossref]

Z. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 35, 330 (2014).
[Crossref]

Ma, J.

C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, Appl. Phys. Lett. 106, 181110 (2015).
[Crossref]

C. Liu, Z. Liu, T. Huang, J. Ma, and K. M. Lau, J. Cryst. Growth 414, 243 (2015).
[Crossref]

Z. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 35, 330 (2014).
[Crossref]

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, Appl. Phys. Lett. 104, 091103 (2014).
[Crossref]

Mishra, U. K.

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Solid-State Electron. 41, 1569 (1997).
[Crossref]

Pelekanos, N. T.

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, Microelectron. Eng. 90, 33 (2012).
[Crossref]

Shi, Z.

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, Appl. Phys. Lett. 108, 162102 (2016).
[Crossref]

Waldron, J.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, Appl. Phys. Lett. 102, 192107 (2013).
[Crossref]

Wang, L.

Wang, M.

Wang, Y.

Wetzel, C.

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, Appl. Phys. Lett. 102, 192107 (2013).
[Crossref]

Wu, Y.-F.

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Solid-State Electron. 41, 1569 (1997).
[Crossref]

Xu, J.

Yang, Y.

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, Appl. Phys. Lett. 108, 162102 (2016).
[Crossref]

Yang, Z.

Yao, Y.

You, G.

Yuan, J.

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, Appl. Phys. Lett. 108, 162102 (2016).
[Crossref]

W. Cai, Y. Wang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, Opt. Express 24, 6004 (2016).
[Crossref]

Yuan, W.

Zhu, G.

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, Appl. Phys. Lett. 108, 162102 (2016).
[Crossref]

Zhu, H.

W. Cai, Y. Wang, X. Gao, J. Yuan, W. Yuan, H. Zhu, and Y. Wang, Opt. Express 24, 6004 (2016).
[Crossref]

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, Appl. Phys. Lett. 108, 162102 (2016).
[Crossref]

Zou, X.

Y. Cai, X. Zou, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 39, 224 (2018).
[Crossref]

C. Liu, Y. Cai, X. Zou, and K. M. Lau, IEEE Photon. Technol. Lett. 28, 1130 (2016).
[Crossref]

Appl. Phys. Lett. (4)

Y. Wang, G. Zhu, W. Cai, X. Gao, Y. Yang, J. Yuan, Z. Shi, and H. Zhu, Appl. Phys. Lett. 108, 162102 (2016).
[Crossref]

Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, and T. P. Chow, Appl. Phys. Lett. 102, 192107 (2013).
[Crossref]

Z. Liu, J. Ma, T. Huang, C. Liu, and K. M. Lau, Appl. Phys. Lett. 104, 091103 (2014).
[Crossref]

C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, Appl. Phys. Lett. 106, 181110 (2015).
[Crossref]

IEEE Electron Device Lett. (2)

Z. Liu, T. Huang, J. Ma, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 35, 330 (2014).
[Crossref]

Y. Cai, X. Zou, C. Liu, and K. M. Lau, IEEE Electron Device Lett. 39, 224 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Liu, Y. Cai, X. Zou, and K. M. Lau, IEEE Photon. Technol. Lett. 28, 1130 (2016).
[Crossref]

J. Cryst. Growth (1)

C. Liu, Z. Liu, T. Huang, J. Ma, and K. M. Lau, J. Cryst. Growth 414, 243 (2015).
[Crossref]

J. Electron. Mater. (1)

C. Liu, Y. Cai, H. Jiang, and K. M. Lau, J. Electron. Mater. 45, 2092 (2016).
[Crossref]

Microelectron. Eng. (1)

F. G. Kalaitzakis, E. Iliopoulos, G. Konstantinidis, and N. T. Pelekanos, Microelectron. Eng. 90, 33 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Solid-State Electron. (1)

Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Solid-State Electron. 41, 1569 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic illustration of a voltage-controlled HEMT-LED monolithically integrated with a visible MQW-PD (top) and a visible-blind Schottky barrier (SB)-PD (bottom).
Fig. 2.
Fig. 2. (a) Top view SEM image of the HEMT-LED monolithically integrated with a UV PD and a visible PD, scale bar is 200 μm, and (b) on-testing HEMT-LED emits visible light, which propagates across the whole die and is received by the visible InGaN/GaN MQW-PD and UV AlGaN/GaN SB-PD.
Fig. 3.
Fig. 3. Red curve, output characteristics (I-V) of the monolithically integrated circular HEMT-LED, WG/LG=2000  μm/4  μm, LGS/LGD=6  μm/20  μm, LED diameter=600  μm; black curve, light output power of the circular HEMT-LED modulated by VG and VDD, VG=0.54  V with a step of 0.5  V; the inset is the equivalent circuit of the HEMT-LED.
Fig. 4.
Fig. 4. Photocurrent of the InGaN/GaN MQW-PD: (a) against reverse bias of the PD at varied VG biases of the integrated HEMT; (b) modulated by VG and VDD of the HEMT-LED; VG=2.4 to 6  V with a step of 0.2  V.
Fig. 5.
Fig. 5. (a) Schematic energy band diagrams for InGaN/GaN MQW-PDs, InGaN/GaN MQW LEDs, and AlGaN/GaN SB-PDs with negative (V<0), positive (V>0), and negative (V<0) external voltage biases; (b) spectra of the external halogen light (yellow), UV light (violet), and blue light from adjacent HEMT-LED (blue); (c) dark current and photocurrent of the AlGaN/GaN SB-PD against reverse voltage biases under the illumination of different light sources.
Fig. 6.
Fig. 6. (a) Equivalent circuit of the setup for the switching test of the HEMT-LED-PD MOES; (b) red curve, pulsed gate voltage signal; black curve, induced photocurrent temporal traces of the visible MQW-PD.