Abstract

A DC-noise-free on-axis holographic display scheme using a phase-only spatial light modulator (SLM) is proposed. The origin of DC noise in the on-axis holographic display using a phase-only SLM is analyzed, and a DC noise rejection filter is optimized for a phase-only SLM is designed. A novel two-step iterative Fourier transform algorithm for the optimal synthesis of a phase-only computer-generated hologram using the proposed scheme is devised. The proposed scheme and algorithm are validated with numerical simulations and experiments.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Holographic display with tilted spatial light modulator

Tomasz Kozacki
Appl. Opt. 50(20) 3579-3588 (2011)

Spatial cross modulation method using a random diffuser and phase-only spatial light modulator for constructing arbitrary complex fields

Atsushi Shibukawa, Atsushi Okamoto, Masanori Takabayashi, and Akihisa Tomita
Opt. Express 22(4) 3968-3982 (2014)

Speckleless holographic display by complex modulation based on double-phase method

Yijun Qi, Chenliang Chang, and Jun Xia
Opt. Express 24(26) 30368-30378 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, Appl. Opt. 50, H87 (2011).
    [Crossref]
  2. A. Maimone, A. Georgiou, and J. S. Kollin, ACM Trans. Graph. 36, 1 (2017).
    [Crossref]
  3. D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
    [Crossref]
  4. Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, Opt. Express 24, 24999 (2016).
    [Crossref]
  5. P. Refregier and B. Javidi, Opt. Lett. 20, 767 (1995).
    [Crossref]
  6. D. Gabor, Nature 161, 777 (1948).
    [Crossref]
  7. S. Park, J. H. Lee, and H. Kim, JSAP-OSA Joint Symposia 2017 Abstracts (Optical Society of America, 2017), paper 8a_PB2_1.
  8. H. Kim, C.-Y. Hwang, K.-S. Kim, J. Roh, W. Moon, S. Kim, B.-R. Lee, S. Oh, and J. Hahn, Appl. Opt. 53, G139 (2014).
    [Crossref]
  9. J. Roh, K. Kim, E. Moon, S. Kim, B. Yang, J. Hahn, and H. Kim, Opt. Express 25, 14774 (2017).
    [Crossref]
  10. H. Kim and B. Lee, Opt. Lett. 30, 296 (2005).
    [Crossref]
  11. F. Wyrowski, J. Opt. Soc. Am. A 7, 961 (1990).
    [Crossref]

2018 (1)

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

2017 (2)

A. Maimone, A. Georgiou, and J. S. Kollin, ACM Trans. Graph. 36, 1 (2017).
[Crossref]

J. Roh, K. Kim, E. Moon, S. Kim, B. Yang, J. Hahn, and H. Kim, Opt. Express 25, 14774 (2017).
[Crossref]

2016 (1)

2014 (1)

2011 (1)

2005 (1)

1995 (1)

1990 (1)

1948 (1)

D. Gabor, Nature 161, 777 (1948).
[Crossref]

Chang, E.-Y.

Chen, N.

Choi, H.-J.

Choo, H.-G.

Costner, K.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Gabor, D.

D. Gabor, Nature 161, 777 (1948).
[Crossref]

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, ACM Trans. Graph. 36, 1 (2017).
[Crossref]

Gneiting, S.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Goodsell, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Hahn, J.

Haymore, B.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Hong, J.

Hong, K.

Hwang, C.-Y.

Javidi, B.

Kim, H.

Kim, H.-E.

Kim, J.

Kim, K.

Kim, K.-S.

Kim, S.

Kim, T.

Kim, Y.

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, ACM Trans. Graph. 36, 1 (2017).
[Crossref]

Lee, B.

Lee, B.-R.

Lee, J. H.

S. Park, J. H. Lee, and H. Kim, JSAP-OSA Joint Symposia 2017 Abstracts (Optical Society of America, 2017), paper 8a_PB2_1.

Lee, S.

Lim, Y.

Lindsey, M.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, ACM Trans. Graph. 36, 1 (2017).
[Crossref]

Min, S.-W.

Monk, A.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Moon, E.

Moon, W.

Nam, J.

Nygaard, E.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Oh, S.

Park, J.-H.

Park, S.

S. Park, J. H. Lee, and H. Kim, JSAP-OSA Joint Symposia 2017 Abstracts (Optical Society of America, 2017), paper 8a_PB2_1.

Pearson, M.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Peatross, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Qaderi, K.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Rasmussen, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Refregier, P.

Rogers, W.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Roh, J.

Smalley, D. E.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Squire, K.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Van Wagoner, J.

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Wyrowski, F.

Yang, B.

ACM Trans. Graph. (1)

A. Maimone, A. Georgiou, and J. S. Kollin, ACM Trans. Graph. 36, 1 (2017).
[Crossref]

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

Nature (2)

D. Gabor, Nature 161, 777 (1948).
[Crossref]

D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers, M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross, Nature 553, 486 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

S. Park, J. H. Lee, and H. Kim, JSAP-OSA Joint Symposia 2017 Abstracts (Optical Society of America, 2017), paper 8a_PB2_1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Conventional Fresnel holographic display configuration and (b) the diffraction image with DC noise obtained using the conventional setup. High-order intensity distribution with DC noise of a typical holographic display: (c) on-axis display mode and its cross-sectional profile (blue line) with the sinc envelope (dotted orange line), and (d) off-axis display mode and its cross-sectional profile with the sinc envelope. Note that the peaks in the blue line represent DC noise.
Fig. 2.
Fig. 2. Schematic of the proposed DC-noise-free holographic display system and two-step IFTA for CGH synthesis. The lens behind the SLM represents the spherical backlight carrier wave. Note that the calculation for the small blue loop is already included in the SFrT function, so the large black loop represents the entire calculation process.
Fig. 3.
Fig. 3. Numerical results of the DC-noise filtering simulation. Diffraction image calculated using the IFTA (a) without a DC-rejection filter and (b) with a 2.4 mm wide DC-rejection filter. (c) Appearance of the shadow of the DC-rejection filter, the size of which (5 mm) is larger than the maximum filter size. (d) Geometrical consideration of the maximum DC-rejection filter size. (e) Relationship between MSE and DC-rejection filter width.
Fig. 4.
Fig. 4. (a) Experimental setup for the holographic 3D display. Experimental results for the filtering DC-noise simulation. (b) Conventional IFTA without a DC-rejection filter. (c) Proposed IFTA with a DC-rejection filter.
Fig. 5.
Fig. 5. Holographic images of the experimental results with foci at (a) 55, (b) 85, (c) 105, and (d) 180 cm, and the matched numerical results with foci at (e) 55, (f) 85, (g) 105, and (h) 180 cm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

FrT{f(r1);z}=j|λz|+f(r1)exp{jπλz(r2r1)2}r1.
u3(r3)=FrT{FrT{u1(r1)·l(r1);d1}·m(r2);d2}.
u3(r3)=FrT{u1(r1);d1+d2}.
u¯2(r2)=m(r2)FrT{u1(r1)·l(r1);d1}.
u3(r3)=FrT{iFrT{u¯2(r2);d1};d1+d2}.
u3=SFrT{u1·l}=FrT{iFrT{FrT{u1·l;d1}·m;d1};d1+d2}.
u1(r1)=iFrT{u3(r3);d1+d2}.
Dmax=d2θmax=NΔx1d2/(d1+d2),