Abstract

Study of photonic spin-orbital interactions, which involves control of the propagation and spatial distributions of light via its polarization, is not only important at the fundamental level but also has significant implications for functional photonic applications that require active tuning of directional light propagation. Many of the experimental demonstrations have been attributed to the spin-momentum locking characteristic of evanescent waves. In this Letter, we show another property of evanescent waves: the polarization-dependent direction of the imaginary part of the Poynting vector, i.e., reactive power. Based on this property, we propose a simple and robust way to tune the directional far-field scattering from nanoparticles near a surface under evanescent wave illumination by controlling its polarization and direction of the incident light.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adding a spin to Kerker’s condition: angular tuning of directional scattering with designed excitation

Lei Wei, Nandini Bhattacharya, and H. Paul Urbach
Opt. Lett. 42(9) 1776-1779 (2017)

Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces [Invited]

Viktoriia E. Babicheva, Mihail I. Petrov, Kseniia V. Baryshnikova, and Pavel A. Belov
J. Opt. Soc. Am. B 34(7) D18-D28 (2017)

Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles

Brice Rolly, Brian Stout, and Nicolas Bonod
Opt. Express 20(18) 20376-20386 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription