Abstract

In this Letter, a visualization method of a fluid flow through temperature control is proposed. The proposed method enables us to visualize an invisible fluid flow by controlling the temperature so that its visibility can be easily adjusted. Such ability of adjusting appearance is effective for visualizing the phenomena consisting of multiple physical processes. In order to verify the validity of the proposed method, the measurement experiment of visualization of both flow and sound in air using parallel phase-shifting interferometry, which is a similar condition to the previous research [Opt. Lett. 43, 991 (2018) [CrossRef]  ], was conducted.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous imaging of flow and sound using high-speed parallel phase-shifting interferometry

Kenji Ishikawa, Risako Tanigawa, Kohei Yatabe, Yasuhiro Oikawa, Takashi Onuma, and Hayato Niwa
Opt. Lett. 43(5) 991-994 (2018)

Time-directional filtering of wrapped phase for observing transient phenomena with parallel phase-shifting interferometry

Kohei Yatabe, Risako Tanigawa, Kenji Ishikawa, and Yasuhiro Oikawa
Opt. Express 26(11) 13705-13720 (2018)

Temperature measurement in laminar free convective flow using digital holography

Md. Mosarraf Hossain and Chandra Shakher
Appl. Opt. 48(10) 1869-1877 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. Merzkirch, Springer Handbook of Experimental Fluid Mechanics, C. Tropea, A. L. Yarin, and J. F. Foss, eds. (Springer, 2007).
  2. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, 2001).
  3. A. Donges and R. Noll, Laser Measurement Technology: Fundamentals and Applications (Springer, 2015).
  4. M. Versluis, Exp. Fluids 54, 1458 (2013).
    [Crossref]
  5. D. Sinton, Microfluid. Nanofluid. 1, 2 (2004).
    [Crossref]
  6. E. J. Foeth, C. W. H. van Doorne, T. van Terwisga, and B. Wieneke, Exp. Fluids 40, 503 (2006).
    [Crossref]
  7. M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).
  8. Y. Awatsuji, M. Sasada, and T. Kubota, Appl. Phys. Lett. 85, 1069 (2004).
    [Crossref]
  9. J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, Proc. SPIE 5531, 304 (2004).
    [Crossref]
  10. T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Opt. Lett. 36, 4131 (2011).
    [Crossref]
  11. T. Fukuda, Y. Wang, P. Xia, Y. Awatsuji, T. Kakue, K. Nishio, and O. Matoba, Opt. Express 25, 18066 (2017).
    [Crossref]
  12. K. Ishikawa, R. Tanigawa, K. Yatabe, Y. Oikawa, T. Onuma, and H. Niwa, Opt. Lett. 43, 991 (2018).
    [Crossref]
  13. J. H. Gladstone and T. P. Dale, Philos. Trans. R. Soc. London 153, 317 (1863).
    [Crossref]
  14. K. Ishikawa, K. Yatabe, N. Chitanont, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Opt. Express 24, 12922 (2016).
    [Crossref]
  15. K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. Meet. Acoust. 29, 030005 (2016).
    [Crossref]
  16. K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. SPIE 10328, 10328I (2017).
    [Crossref]
  17. K. Yatabe, K. Ishikawa, and Y. Oikawa, J. Sound Vib. 394, 171 (2017).
    [Crossref]
  18. T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Biomed. Opt. Express 1, 610 (2010).
    [Crossref]
  19. K. Yatabe, K. Ishikawa, and Y. Oikawa, J. Opt. Soc. Am. A 34, 87 (2017).
    [Crossref]
  20. K. Yatabe, K. Ishikawa, and Y. Oikawa, Opt. Express 24, 22881 (2016).
    [Crossref]
  21. K. Yatabe, R. Tanigawa, K. Ishikawa, and Y. Oikawa, Opt. Express 26, 13705 (2018).
    [Crossref]
  22. N. Chitanont, K. Yatabe, K. Ishikawa, and Y. Oikawa, Appl. Acoust. 115, 109 (2017).
    [Crossref]

2018 (2)

2017 (5)

N. Chitanont, K. Yatabe, K. Ishikawa, and Y. Oikawa, Appl. Acoust. 115, 109 (2017).
[Crossref]

K. Yatabe, K. Ishikawa, and Y. Oikawa, J. Opt. Soc. Am. A 34, 87 (2017).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. SPIE 10328, 10328I (2017).
[Crossref]

K. Yatabe, K. Ishikawa, and Y. Oikawa, J. Sound Vib. 394, 171 (2017).
[Crossref]

T. Fukuda, Y. Wang, P. Xia, Y. Awatsuji, T. Kakue, K. Nishio, and O. Matoba, Opt. Express 25, 18066 (2017).
[Crossref]

2016 (3)

2013 (1)

M. Versluis, Exp. Fluids 54, 1458 (2013).
[Crossref]

2011 (1)

2010 (1)

2006 (1)

E. J. Foeth, C. W. H. van Doorne, T. van Terwisga, and B. Wieneke, Exp. Fluids 40, 503 (2006).
[Crossref]

2004 (3)

Y. Awatsuji, M. Sasada, and T. Kubota, Appl. Phys. Lett. 85, 1069 (2004).
[Crossref]

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, Proc. SPIE 5531, 304 (2004).
[Crossref]

D. Sinton, Microfluid. Nanofluid. 1, 2 (2004).
[Crossref]

1863 (1)

J. H. Gladstone and T. P. Dale, Philos. Trans. R. Soc. London 153, 317 (1863).
[Crossref]

Awatsuji, Y.

Brock, N. J.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, Proc. SPIE 5531, 304 (2004).
[Crossref]

Chitanont, N.

Dale, T. P.

J. H. Gladstone and T. P. Dale, Philos. Trans. R. Soc. London 153, 317 (1863).
[Crossref]

Donges, A.

A. Donges and R. Noll, Laser Measurement Technology: Fundamentals and Applications (Springer, 2015).

Foeth, E. J.

E. J. Foeth, C. W. H. van Doorne, T. van Terwisga, and B. Wieneke, Exp. Fluids 40, 503 (2006).
[Crossref]

Fujii, M.

Fukuda, T.

Gladstone, J. H.

J. H. Gladstone and T. P. Dale, Philos. Trans. R. Soc. London 153, 317 (1863).
[Crossref]

Hayes, J. B.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, Proc. SPIE 5531, 304 (2004).
[Crossref]

Ikeda, Y.

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. SPIE 10328, 10328I (2017).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. Meet. Acoust. 29, 030005 (2016).
[Crossref]

K. Ishikawa, K. Yatabe, N. Chitanont, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Opt. Express 24, 12922 (2016).
[Crossref]

Ishikawa, K.

K. Ishikawa, R. Tanigawa, K. Yatabe, Y. Oikawa, T. Onuma, and H. Niwa, Opt. Lett. 43, 991 (2018).
[Crossref]

K. Yatabe, R. Tanigawa, K. Ishikawa, and Y. Oikawa, Opt. Express 26, 13705 (2018).
[Crossref]

K. Yatabe, K. Ishikawa, and Y. Oikawa, J. Opt. Soc. Am. A 34, 87 (2017).
[Crossref]

K. Yatabe, K. Ishikawa, and Y. Oikawa, J. Sound Vib. 394, 171 (2017).
[Crossref]

N. Chitanont, K. Yatabe, K. Ishikawa, and Y. Oikawa, Appl. Acoust. 115, 109 (2017).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. SPIE 10328, 10328I (2017).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. Meet. Acoust. 29, 030005 (2016).
[Crossref]

K. Ishikawa, K. Yatabe, N. Chitanont, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Opt. Express 24, 12922 (2016).
[Crossref]

K. Yatabe, K. Ishikawa, and Y. Oikawa, Opt. Express 24, 22881 (2016).
[Crossref]

Ito, K.

Kakue, T.

Kompenhans, J.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

Kubota, T.

Matoba, O.

Merzkirch, W.

W. Merzkirch, Springer Handbook of Experimental Fluid Mechanics, C. Tropea, A. L. Yarin, and J. F. Foss, eds. (Springer, 2007).

Millerd, J. E.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, Proc. SPIE 5531, 304 (2004).
[Crossref]

Nishio, K.

Niwa, H.

K. Ishikawa, R. Tanigawa, K. Yatabe, Y. Oikawa, T. Onuma, and H. Niwa, Opt. Lett. 43, 991 (2018).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. SPIE 10328, 10328I (2017).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. Meet. Acoust. 29, 030005 (2016).
[Crossref]

K. Ishikawa, K. Yatabe, N. Chitanont, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Opt. Express 24, 12922 (2016).
[Crossref]

Noll, R.

A. Donges and R. Noll, Laser Measurement Technology: Fundamentals and Applications (Springer, 2015).

North-Morris, M. B.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, Proc. SPIE 5531, 304 (2004).
[Crossref]

Novak, M.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, Proc. SPIE 5531, 304 (2004).
[Crossref]

Oikawa, Y.

K. Ishikawa, R. Tanigawa, K. Yatabe, Y. Oikawa, T. Onuma, and H. Niwa, Opt. Lett. 43, 991 (2018).
[Crossref]

K. Yatabe, R. Tanigawa, K. Ishikawa, and Y. Oikawa, Opt. Express 26, 13705 (2018).
[Crossref]

K. Yatabe, K. Ishikawa, and Y. Oikawa, J. Opt. Soc. Am. A 34, 87 (2017).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. SPIE 10328, 10328I (2017).
[Crossref]

N. Chitanont, K. Yatabe, K. Ishikawa, and Y. Oikawa, Appl. Acoust. 115, 109 (2017).
[Crossref]

K. Yatabe, K. Ishikawa, and Y. Oikawa, J. Sound Vib. 394, 171 (2017).
[Crossref]

K. Ishikawa, K. Yatabe, N. Chitanont, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Opt. Express 24, 12922 (2016).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. Meet. Acoust. 29, 030005 (2016).
[Crossref]

K. Yatabe, K. Ishikawa, and Y. Oikawa, Opt. Express 24, 22881 (2016).
[Crossref]

Onuma, T.

K. Ishikawa, R. Tanigawa, K. Yatabe, Y. Oikawa, T. Onuma, and H. Niwa, Opt. Lett. 43, 991 (2018).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. SPIE 10328, 10328I (2017).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. Meet. Acoust. 29, 030005 (2016).
[Crossref]

K. Ishikawa, K. Yatabe, N. Chitanont, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Opt. Express 24, 12922 (2016).
[Crossref]

Raffel, M.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

Sasada, M.

Y. Awatsuji, M. Sasada, and T. Kubota, Appl. Phys. Lett. 85, 1069 (2004).
[Crossref]

Settles, G. S.

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, 2001).

Shimozato, Y.

Sinton, D.

D. Sinton, Microfluid. Nanofluid. 1, 2 (2004).
[Crossref]

Tahara, T.

Tanigawa, R.

Ura, S.

van Doorne, C. W. H.

E. J. Foeth, C. W. H. van Doorne, T. van Terwisga, and B. Wieneke, Exp. Fluids 40, 503 (2006).
[Crossref]

van Terwisga, T.

E. J. Foeth, C. W. H. van Doorne, T. van Terwisga, and B. Wieneke, Exp. Fluids 40, 503 (2006).
[Crossref]

Versluis, M.

M. Versluis, Exp. Fluids 54, 1458 (2013).
[Crossref]

Wang, Y.

Wereley, S. T.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

Wieneke, B.

E. J. Foeth, C. W. H. van Doorne, T. van Terwisga, and B. Wieneke, Exp. Fluids 40, 503 (2006).
[Crossref]

Willert, C. E.

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

Wyant, J. C.

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, Proc. SPIE 5531, 304 (2004).
[Crossref]

Xia, P.

Yatabe, K.

K. Ishikawa, R. Tanigawa, K. Yatabe, Y. Oikawa, T. Onuma, and H. Niwa, Opt. Lett. 43, 991 (2018).
[Crossref]

K. Yatabe, R. Tanigawa, K. Ishikawa, and Y. Oikawa, Opt. Express 26, 13705 (2018).
[Crossref]

K. Yatabe, K. Ishikawa, and Y. Oikawa, J. Opt. Soc. Am. A 34, 87 (2017).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. SPIE 10328, 10328I (2017).
[Crossref]

K. Yatabe, K. Ishikawa, and Y. Oikawa, J. Sound Vib. 394, 171 (2017).
[Crossref]

N. Chitanont, K. Yatabe, K. Ishikawa, and Y. Oikawa, Appl. Acoust. 115, 109 (2017).
[Crossref]

K. Ishikawa, K. Yatabe, N. Chitanont, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Opt. Express 24, 12922 (2016).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. Meet. Acoust. 29, 030005 (2016).
[Crossref]

K. Yatabe, K. Ishikawa, and Y. Oikawa, Opt. Express 24, 22881 (2016).
[Crossref]

Yonesaka, R.

Yoshii, M.

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. SPIE 10328, 10328I (2017).
[Crossref]

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. Meet. Acoust. 29, 030005 (2016).
[Crossref]

K. Ishikawa, K. Yatabe, N. Chitanont, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Opt. Express 24, 12922 (2016).
[Crossref]

Appl. Acoust. (1)

N. Chitanont, K. Yatabe, K. Ishikawa, and Y. Oikawa, Appl. Acoust. 115, 109 (2017).
[Crossref]

Appl. Phys. Lett. (1)

Y. Awatsuji, M. Sasada, and T. Kubota, Appl. Phys. Lett. 85, 1069 (2004).
[Crossref]

Biomed. Opt. Express (1)

Exp. Fluids (2)

E. J. Foeth, C. W. H. van Doorne, T. van Terwisga, and B. Wieneke, Exp. Fluids 40, 503 (2006).
[Crossref]

M. Versluis, Exp. Fluids 54, 1458 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Sound Vib. (1)

K. Yatabe, K. Ishikawa, and Y. Oikawa, J. Sound Vib. 394, 171 (2017).
[Crossref]

Microfluid. Nanofluid. (1)

D. Sinton, Microfluid. Nanofluid. 1, 2 (2004).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Philos. Trans. R. Soc. London (1)

J. H. Gladstone and T. P. Dale, Philos. Trans. R. Soc. London 153, 317 (1863).
[Crossref]

Proc. Meet. Acoust. (1)

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. Meet. Acoust. 29, 030005 (2016).
[Crossref]

Proc. SPIE (2)

K. Ishikawa, K. Yatabe, Y. Ikeda, Y. Oikawa, T. Onuma, H. Niwa, and M. Yoshii, Proc. SPIE 10328, 10328I (2017).
[Crossref]

J. E. Millerd, N. J. Brock, J. B. Hayes, M. B. North-Morris, M. Novak, and J. C. Wyant, Proc. SPIE 5531, 304 (2004).
[Crossref]

Other (4)

M. Raffel, C. E. Willert, S. T. Wereley, and J. Kompenhans, Particle Image Velocimetry: A Practical Guide (Springer, 2007).

W. Merzkirch, Springer Handbook of Experimental Fluid Mechanics, C. Tropea, A. L. Yarin, and J. F. Foss, eds. (Springer, 2007).

G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media (Springer, 2001).

A. Donges and R. Noll, Laser Measurement Technology: Fundamentals and Applications (Springer, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Relation between the phase of light and the temperature difference from surroundings. The phase of light was calculated from Eq. (6). ( k = 1.181 × 10 7    rad / m , n 0 = 1.000273 , and T 0 = 293.15    K were used for the calculation.) The temperature T is assumed to be constant on the optical path, whose length was set to 4, 6, 8, 10, 12, and 14 mm.
Fig. 2.
Fig. 2. Schematic diagram of PPSI used in the experiment [12].
Fig. 3.
Fig. 3. Comparing theoretical value with the experimental value. The temperature differences from surroundings were + 5 ° C , + 10 ° C , and + 15 ° C , from top to bottom.
Fig. 4.
Fig. 4. Experimental setup for realizing the proposed method.
Fig. 5.
Fig. 5. Positional relation of the visualized image and visualized images. The left-most image indicates the positional relation between the whistle, flow, and sound. The temperature difference of air from room temperature was + 0 ° C , + 5 ° C , + 10 ° C , and + 15 ° C in order, from the second from the left to the right, respectively.
Fig. 6.
Fig. 6. Images whose flow and sound were separated. The left-side images are visualized images, the same as in Fig. 5; the right-side images are images separated by the spatial high-pass filter.
Fig. 7.
Fig. 7. Intensity histogram of visualized images and separated images. The blue histogram shows the flow component chosen from separated images, and the red histogram shows the sound component chosen from visualized images.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n 1 ρ = const. ,
n T 1 ρ T = n 0 1 ρ 0 .
n T ( r , t ) = T 0 T ( r , t ) ( n 0 1 ) + 1 ,
ϕ ( r , t ) = k L n ( l , t ) d l ,
ϕ T ( r , t ) = k L n T ( l , t ) d l ,
Δ ϕ ( r , t ) = ϕ T ( r , t ) ϕ 0 = k L ( n T ( l , t ) n 0 ) d l = k ( n 0 1 ) L ( T 0 T ( l , t ) 1 ) d l ,

Metrics