Abstract

Compact spectrometers based on disordered planar waveguides exhibit a rather high resolution with a relatively small footprint compared to conventional spectrometers. This is achieved by multiple scattering of light, which—if properly engineered—significantly enhances the effective optical path length. Here a design study of random spectrometers for TE- and TM-polarized light is presented that combines the results of Mie theory, multiple-scattering theory, and full electromagnetic simulations. It is shown that the performance of such random spectrometers depends on single-scattering quantities, notably on the overall scattering efficiency and the asymmetry parameter. Further, the study shows that a well-developed diffusive regime is not required in practice and that a standard integrated-optical layout is sufficient to obtain efficient devices even for rather weakly scattering systems consisting of low index inclusions in high-index matrices, such as pores in planar silicon-nitride-based waveguides. This allows for both significant reductions in footprint with acceptable losses in resolution and for device operation in the visible and near-infrared frequency range.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fundamental spatial resolution of an x-ray pore optic

Arjan L. Mieremet and Marco W. Beijersbergen
Appl. Opt. 44(33) 7098-7105 (2005)

Evanescently coupled multimode spiral spectrometer

Brandon Redding, Seng Fatt Liew, Yaron Bromberg, Raktim Sarma, and Hui Cao
Optica 3(9) 956-962 (2016)

Mid-infrared silicon photonic waveguides and devices [Invited]

Yi Zou, Swapnajit Chakravarty, Chi-Jui Chung, Xiaochuan Xu, and Ray T. Chen
Photon. Res. 6(4) 254-276 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription