Abstract

Nonlinear optical effects have been studied extensively in microresonators as more photonics applications transitions to integrated on-chip platforms. Due to low optical losses and small mode volumes, microresonators are demonstrably the state-of-the-art platform for second-harmonic generation (SHG). However, the working bandwidth of such microresonator-based devices is relatively small, presenting a challenge for applications where a specifically targeted wavelength needs to be addressed. In this Letter, we analyze the phase-matching window and resonance wavelength with respect to varying microring widths, radii, and temperatures. A chip with precise design parameters was fabricated with phase matching realized at the exact wavelength of a two-photon transition of Rb85. This procedure can be generalized to any target pump wavelength in the telecom band with picometer precision.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency

Xiang Guo, Chang-Ling Zou, and Hong X. Tang
Optica 3(10) 1126-1131 (2016)

Efficient third-harmonic generation in composite aluminum nitride/silicon nitride microrings

Joshua B. Surya, Xiang Guo, Chang-Ling Zou, and Hong X. Tang
Optica 5(2) 103-108 (2018)

Optical frequency comb generation from aluminum nitride microring resonator

Hojoong Jung, Chi Xiong, King Y. Fong, Xufeng Zhang, and Hong X. Tang
Opt. Lett. 38(15) 2810-2813 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription