Abstract
We use our vector Maxwell’s nonlinear eigenmode solver to study the stationary solutions in 2D cross-section plasmonic slot waveguides with isotropic Kerr nonlinear codes and anisotropic Kerr nonlinear cores. First, for the isotropic case, we demonstrate that, even in the low-power regime, 1D studies may not provide accurate and meaningful results compared to 2D ones. Second, we study, including at high powers, the link between the nonlinear parameter and the change of the nonlinear propagation constant . Third, we demonstrate that our approach is also valid for anisotropic waveguides, and we show how to improve by, a factor of 2, the figure of merit of nonlinear plasmonic slot waveguides using realistic materials.
© 2018 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (6)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription