Abstract

We proposed combining temporally shaped (double-pulse train) laser pulses with spatially shaped (Bessel beam) laser pulses. By using a temporally shaped femtosecond laser Bessel-beam-assisted chemical etching method, the energy deposition efficiency was improved by adjusting the pulse delay to yield a stronger material modification and, thus, a higher etching depth. The etching depth was enhanced by a factor of 13 using the temporally shaped Bessel beam. The mechanism of etching depth enhancement was elucidated by localized transient-free electrons dynamics-induced structural and morphological changes. Micro-Raman spectroscopy was conducted to verify the structural changes inside the material. This method enables high-throughput, high-aspect-ratio microchannel fabrication in fused silica for potential applications in microfluidics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent etching of fused silica based on electrons dynamics control by shaped femtosecond pulse trains for microchannel fabrication

X. Yan, L. Jiang, X. Li, K. Zhang, B. Xia, P. Liu, L. Qu, and Y. Lu
Opt. Lett. 39(17) 5240-5243 (2014)

Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching

Krishna Chaitanya Vishnubhatla, Nicola Bellini, Roberta Ramponi, Giulio Cerullo, and Roberto Osellame
Opt. Express 17(10) 8685-8695 (2009)

High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains

Lan Jiang, Pengjun Liu, Xueliang Yan, Ni Leng, Chuancai Xu, Hai Xiao, and Yongfeng Lu
Opt. Lett. 37(14) 2781-2783 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription