Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm

Not Accessible

Your library or personal account may give you access

Abstract

Strongly squeezed light at telecommunication wavelengths is a necessary resource for one-sided device-independent quantum key distribution via fiber networks. Reducing the optical pump power that is required for its generation will advance this quantum technology towards efficient out-of-laboratory operation. Here, we investigate the second-harmonic pump power requirement for parametric generation of continuous-wave squeezed vacuum states at 1550 nm in a state-of-the-art doubly resonant standing-wave periodically poled potassium titanyl phosphate cavity setup. We use coarse adjustment of the Gouy phase via the cavity length, together with temperature fine-tuning, for simultaneously achieving double resonance and (quasi) phase matching, and observe a squeeze factor of 13 dB at 1550 nm from just 12 mW of external pump power at 775 nm. We anticipate that optimizing the cavity coupler reflectivity will reduce the external pump power to 3 mW, without reducing the squeeze factor.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Detection and perfect fitting of 13.2  dB squeezed vacuum states by considering green-light-induced infrared absorption

Shaoping Shi, Yajun Wang, Wenhai Yang, Yaohui Zheng, and Kunchi Peng
Opt. Lett. 43(21) 5411-5414 (2018)

Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB

Moritz Mehmet, Stefan Ast, Tobias Eberle, Sebastian Steinlechner, Henning Vahlbruch, and Roman Schnabel
Opt. Express 19(25) 25763-25772 (2011)

Observation of cw squeezed light at 1550 nm

Moritz Mehmet, Sebastian Steinlechner, Tobias Eberle, Henning Vahlbruch, André Thüring, Karsten Danzmann, and Roman Schnabel
Opt. Lett. 34(7) 1060-1062 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.