Abstract

We describe a method to control the directional scattering of a high-index dielectric nanosphere, which utilizes the unique focusing properties of an azimuthally polarized phase vortex and a radially polarized beam to independently excite inside the nanosphere a spinning magnetic dipole and a linearly polarized electric dipole mode normal to the magnetic dipole. We show that by simply adjusting the phase and amplitude of the field on the exit pupil of the optical system, the scattering of the nanosphere can be tuned to any direction within a plane, and the method works over a broad wavelength range.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A generalized Kerker condition for highly directive nanoantennas

R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl
Opt. Lett. 40(11) 2645-2648 (2015)

Directionality in scattering by nanoparticles: Kerker’s null-scattering conditions revisited

B. García-Cámara, R. Alcaraz de la Osa, J. M. Saiz, F. González, and F. Moreno
Opt. Lett. 36(5) 728-730 (2011)

Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions

Anders Pors, Sebastian K. H. Andersen, and Sergey I. Bozhevolnyi
Opt. Express 23(22) 28808-28828 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (10369 KB)      Angular tuning of the directional scattering by changing the phase of the radially polarized pupil field.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription