Abstract

We report an Yb-doped fiber master-oscillator power-amplifier (MOPA) system with the capability of selectively generating doughnut-shaped radially and azimuthally polarized beams with user-defined temporal pulse shapes. The desired output polarization was generated with the aid of a nanograting spatially variant half-waveplate (S-waveplate). The latter was used to convert the linearly polarized fundamental (LP01) mode output from the preamplification stages to a doughnut-shaped radially polarized beam prior to the power amplifier stage. A maximum output pulse energy of 860  μJ was achieved for 100  ns pulses at 25 kHz with user-defined pulse shape for both radial and azimuthal polarization states. The polarization purity and beam propagation factor (M2) were measured to be >12  dB and 2.2, respectively.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High-energy diode-seeded nanosecond 2  μm fiber MOPA systems incorporating active pulse shaping

Z. Li, A. M. Heidt, P. S. Teh, M. Berendt, J. K. Sahu, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson
Opt. Lett. 39(6) 1569-1572 (2014)

Burst-mode-operated, sub-nanosecond fiber MOPA system incorporating direct seed-packet shaping

Tao Chen, Hao Liu, Wei Kong, and Rong Shu
Opt. Express 24(18) 20963-20972 (2016)

Single-mode narrow-bandwidth temporally shaped nanosecond-pulse ytterbium-doped fiber MOPA for a large-scale laser facility front-end

Laure Lago, Arnaud Mussot, Marc Douay, and Emmanuel Hugonnot
J. Opt. Soc. Am. B 27(11) 2231-2236 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. P. Biss and T. G. Brown, Opt. Lett. 28, 923 (2003).
    [Crossref]
  2. Q. Zhan, Opt. Express 12, 3377 (2004).
    [Crossref]
  3. R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, Phys. Procedia 12, 21 (2011).
    [Crossref]
  4. I. Moshe, S. Jackel, A. Meir, Y. Lumer, and E. Leibush, Opt. Lett. 32, 47 (2007).
    [Crossref]
  5. M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, Opt. Express 19, 5093 (2011).
    [Crossref]
  6. A. Loescher, J. P. Negel, T. Graf, and M. A. Ahmed, Opt. Lett. 40, 5758 (2015).
    [Crossref]
  7. D. Lin, K. G. Xia, R. X. Li, X. J. Li, G. Q. Li, K. Ueda, and J. L. Li, Opt. Lett. 35, 3574 (2010).
    [Crossref]
  8. D. Lin, J. M. O. Daniel, M. Gecevicius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, Opt. Lett. 39, 5359 (2014).
    [Crossref]
  9. S. Kanazawa, Y. Kozawa, and S. Sato, Opt. Lett. 39, 2857 (2014).
    [Crossref]
  10. M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
    [Crossref]
  11. K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, P. S. Teh, L. D. Lin, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 51 (2014).
    [Crossref]
  12. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
    [Crossref]
  13. A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. Lin, and D. J. Richardson, Opt. Express 17, 20927 (2009).
    [Crossref]
  14. B. Ndagano, R. Brüning, M. McLaren, M. Duparré, and A. Forbes, Opt. Express 23, 17330 (2015).
    [Crossref]

2015 (2)

2014 (3)

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, P. S. Teh, L. D. Lin, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 51 (2014).
[Crossref]

D. Lin, J. M. O. Daniel, M. Gecevicius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, Opt. Lett. 39, 5359 (2014).
[Crossref]

S. Kanazawa, Y. Kozawa, and S. Sato, Opt. Lett. 39, 2857 (2014).
[Crossref]

2011 (3)

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, Phys. Procedia 12, 21 (2011).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, Opt. Express 19, 5093 (2011).
[Crossref]

2010 (1)

2009 (1)

2007 (2)

2004 (1)

2003 (1)

Abdou-Ahmed, M.

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, Phys. Procedia 12, 21 (2011).
[Crossref]

Ahmed, M. A.

Alam, S.

Beresna, M.

D. Lin, J. M. O. Daniel, M. Gecevicius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, Opt. Lett. 39, 5359 (2014).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Biss, D. P.

Brown, T. G.

Brüning, R.

Chen, K. K.

Clarkson, W. A.

Cockburn, A.

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, P. S. Teh, L. D. Lin, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 51 (2014).
[Crossref]

Daniel, J. M. O.

Duparré, M.

Feurer, T.

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[Crossref]

Forbes, A.

Gecevicius, M.

D. Lin, J. M. O. Daniel, M. Gecevicius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, Opt. Lett. 39, 5359 (2014).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Graf, T.

Haefner, M.

Jackel, S.

Jeong, Y.

Kanazawa, S.

Kazansky, P. G.

D. Lin, J. M. O. Daniel, M. Gecevicius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, Opt. Lett. 39, 5359 (2014).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Kozawa, Y.

Kraus, M.

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, Phys. Procedia 12, 21 (2011).
[Crossref]

Leibush, E.

Li, G. Q.

Li, J. L.

Li, R. X.

Li, X. J.

Lin, D.

Lin, L. D.

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, P. S. Teh, L. D. Lin, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 51 (2014).
[Crossref]

Loescher, A.

Lumer, Y.

Malinowski, A.

McLaren, M.

Meier, M.

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[Crossref]

Meir, A.

Michalowski, A.

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, Phys. Procedia 12, 21 (2011).
[Crossref]

Moshe, I.

Ndagano, B.

Negel, J. P.

Nilsson, J.

O’Neill, W.

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, P. S. Teh, L. D. Lin, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 51 (2014).
[Crossref]

Onuseit, V.

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, Phys. Procedia 12, 21 (2011).
[Crossref]

Osten, W.

Pangovski, K.

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, P. S. Teh, L. D. Lin, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 51 (2014).
[Crossref]

Pruss, C.

Richardson, D.

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, P. S. Teh, L. D. Lin, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 51 (2014).
[Crossref]

Richardson, D. J.

Romano, V.

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[Crossref]

Rominger, V.

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, Phys. Procedia 12, 21 (2011).
[Crossref]

Sato, S.

Sparkes, M.

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, P. S. Teh, L. D. Lin, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 51 (2014).
[Crossref]

Teh, P. S.

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, P. S. Teh, L. D. Lin, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 51 (2014).
[Crossref]

Ueda, K.

Vogel, M.

Voss, A.

Vu, K. T.

Weber, R.

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, Phys. Procedia 12, 21 (2011).
[Crossref]

Xia, K. G.

Zhan, Q.

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[Crossref]

Appl. Phys. Lett. (1)

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Pangovski, M. Sparkes, A. Cockburn, W. O’Neill, P. S. Teh, L. D. Lin, and D. Richardson, IEEE J. Sel. Top. Quantum Electron. 20, 51 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (6)

Phys. Procedia (1)

R. Weber, A. Michalowski, M. Abdou-Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, Phys. Procedia 12, 21 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the experimental setup for amplifying cylindrical vector beams using an Yb-doped fiber MOPA system and the output beam diagnostics. ISO, optical isolator; WDM, wavelength division multiplexer; AOM, acoustic optical modulator; PSC, pump and signal combiner; CIR, circulator; CCD, charged coupled device; BPF, bandpass filter; NPBS, non-polarization beam splitter.

Fig. 2.
Fig. 2.

Pulse energy and average output power as a function of the launched pump power to the final amplifier.

Fig. 3.
Fig. 3.

Spectra of the 14 ns/80 ns two-step pulse measured after the FBG (black), 3rd stage preamplifier (blue) and at the output of the MOPA with a pulse energy of 860  μJ. (Resolution=0.02  nm.)

Fig. 4.
Fig. 4.

Normalized pulse shapes after the SLD (dashed lines) and the corresponding output peak powers (solid lines) for two different two-step pulses.

Fig. 5.
Fig. 5.

Experimentally observed intensity distributions of the original output beam (top row), the radially polarized output beam (second row), and the azimuthally polarized output beam (bottom row) at the maximum pulse energy of 860  μJ. (a), (f), and (k) show total intensity profiles. (b)–(e), (g)–(j), and (l)–(o) show beam profiles after passing through a rotated linear polarizer. The white arrows indicate the transmission axis of the polarizer.

Fig. 6.
Fig. 6.

Theoretical beam profiles for TM01, TE01, HE21e, and HE21o modes after the S-waveplate (a) without and (b) with the linear polarizer for orthogonal s- and p-polarization directions. The corresponding measured profiles on the right confirm high radial polarization purity.