Abstract

We propose a new model to characterize the phase noise in swept-source optical coherence tomography (SS-OCT). The new model explicitly incorporates scanning variability, timing jitter, and sample location in addition to intensity noise (shot noise). The model was analyzed and validated by using both Monte Carlo methods and experiments. We suggest that the proposed model can be used as a guideline for future SS-OCT experimental designs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Postprocessing algorithms to minimize fixed-pattern artifact and reduce trigger jitter in swept source optical coherence tomography

Gangjun Liu, Ou Tan, Simon S. Gao, Alex D. Pechauer, ByungKun Lee, Chen D. Lu, James G. Fujimoto, and David Huang
Opt. Express 23(8) 9824-9834 (2015)

Spectral phase based k-domain interpolation for uniform sampling in swept-source optical coherence tomography

Tong Wu, Zhihua Ding, Ling Wang, and Minghui Chen
Opt. Express 19(19) 18430-18439 (2011)

Phase-stability optimization of swept-source optical coherence tomography

Sucbei Moon and Zhongping Chen
Biomed. Opt. Express 9(11) 5280-5295 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, Opt. Express 13, 3931 (2005).
    [Crossref]
  2. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, Opt. Lett. 30, 1162 (2005).
    [Crossref]
  3. M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
    [Crossref]
  4. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, Opt. Express 16, 6008 (2008).
    [Crossref]
  5. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, Opt. Express 13, 5483 (2005).
    [Crossref]
  6. D. C. Adler, R. Huber, and J. G. Fujimoto, Opt. Lett. 32, 626 (2007).
    [Crossref]
  7. M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, Opt. Express 22, 2632 (2014).
    [Crossref]
  8. W. Drexler and J. G. Fujimoto, eds., Theory of Optical Coherence Tomography (Springer, 2015), pp. 65–94.
  9. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, Nat. Photonics 1, 709 (2007).
    [Crossref]
  10. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, Opt. Express 17, 14880 (2009).
    [Crossref]
  11. W. Choi, B. Potsaid, V. Jayaraman, B. Baumann, I. Grulkowski, J. J. Liu, C. D. Lu, A. E. Cable, D. Huang, J. S. Duker, and J. G. Fujimoto, Opt. Lett. 38, 338 (2013).
    [Crossref]
  12. G. Liu, O. Tan, S. S. Gao, A. D. Pechauer, B. Lee, C. D. Lu, J. G. Fujimoto, and D. Huang, Opt. Express 23, 9824 (2015).
    [Crossref]
  13. Y. Sasaki, M. Fujimoto, S. Yagi, S. Yamagishi, S. Toyoda, and J. Kobayashi, Proc. SPIE 8934, 89342Y (2014).
    [Crossref]

2015 (1)

2014 (2)

2013 (1)

2009 (1)

2008 (1)

2007 (2)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, Nat. Photonics 1, 709 (2007).
[Crossref]

D. C. Adler, R. Huber, and J. G. Fujimoto, Opt. Lett. 32, 626 (2007).
[Crossref]

2006 (1)

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
[Crossref]

2005 (3)

Adler, D. C.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, Nat. Photonics 1, 709 (2007).
[Crossref]

D. C. Adler, R. Huber, and J. G. Fujimoto, Opt. Lett. 32, 626 (2007).
[Crossref]

Bajraszewski, T.

Baumann, B.

Bonesi, M.

Boschert, P.

Bouma, B. E.

Cable, A. E.

Cense, B.

Chen, Y.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, Nat. Photonics 1, 709 (2007).
[Crossref]

Choi, W.

Choma, M. A.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
[Crossref]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, Opt. Lett. 30, 1162 (2005).
[Crossref]

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, Nat. Photonics 1, 709 (2007).
[Crossref]

Crawford, M.

Creazzo, T. L.

de Boer, J. F.

Drexler, W.

Duker, J. S.

Ellerbee, A. K.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
[Crossref]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, Opt. Lett. 30, 1162 (2005).
[Crossref]

Ensher, J.

Fujimoto, J. G.

Fujimoto, M.

Y. Sasaki, M. Fujimoto, S. Yagi, S. Yamagishi, S. Toyoda, and J. Kobayashi, Proc. SPIE 8934, 89342Y (2014).
[Crossref]

Gao, S. S.

Gora, M.

Grulkowski, I.

Hoover, E.

Huang, D.

Huber, R.

Izatt, J. A.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
[Crossref]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, Opt. Lett. 30, 1162 (2005).
[Crossref]

Jayaraman, V.

Kaluzny, B. J.

Karnowski, K.

Kobayashi, J.

Y. Sasaki, M. Fujimoto, S. Yagi, S. Yamagishi, S. Toyoda, and J. Kobayashi, Proc. SPIE 8934, 89342Y (2014).
[Crossref]

Kowalczyk, A.

Lee, B.

Leitgeb, R. A.

Liu, G.

Liu, J. J.

Lu, C. D.

Minneman, M. P.

Mujat, M.

Park, B. H.

Pechauer, A. D.

Pierce, M. C.

Potsaid, B.

Sasaki, Y.

Y. Sasaki, M. Fujimoto, S. Yagi, S. Yamagishi, S. Toyoda, and J. Kobayashi, Proc. SPIE 8934, 89342Y (2014).
[Crossref]

Sattmann, H.

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, Nat. Photonics 1, 709 (2007).
[Crossref]

Szkulmowska, A.

Szkulmowski, M.

Tan, O.

Tearney, G. J.

Toyoda, S.

Y. Sasaki, M. Fujimoto, S. Yagi, S. Yamagishi, S. Toyoda, and J. Kobayashi, Proc. SPIE 8934, 89342Y (2014).
[Crossref]

Vakoc, B. J.

Wojtkowski, M.

Yagi, S.

Y. Sasaki, M. Fujimoto, S. Yagi, S. Yamagishi, S. Toyoda, and J. Kobayashi, Proc. SPIE 8934, 89342Y (2014).
[Crossref]

Yamagishi, S.

Y. Sasaki, M. Fujimoto, S. Yagi, S. Yamagishi, S. Toyoda, and J. Kobayashi, Proc. SPIE 8934, 89342Y (2014).
[Crossref]

Yang, C.

Yazdanfar, S.

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
[Crossref]

Yun, S. H.

Yun, S.-H.

Zabihian, B.

J. Biomed. Opt. (1)

M. A. Choma, A. K. Ellerbee, S. Yazdanfar, and J. A. Izatt, J. Biomed. Opt. 11, 024014 (2006).
[Crossref]

Nat. Photonics (1)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, Nat. Photonics 1, 709 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Proc. SPIE (1)

Y. Sasaki, M. Fujimoto, S. Yagi, S. Yamagishi, S. Toyoda, and J. Kobayashi, Proc. SPIE 8934, 89342Y (2014).
[Crossref]

Other (1)

W. Drexler and J. G. Fujimoto, eds., Theory of Optical Coherence Tomography (Springer, 2015), pp. 65–94.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Effect of (a) scanning variability, (b) timing jitter, and (c) both on the scanning curve of SS-OCT. k ˜ [ m ] represents the actual output wavenumber from the light source. The solid lines represent the ideal scanning curve, while the dashed lines stand for the actual measurements.
Fig. 2.
Fig. 2. Phasor depiction of the proposed model. The original signal is denoted by A with a phase angle of β 0 . A is first rotated by δ β due to the presence of the timing jitter and the scanning variability. The resultant A is then added by an AWGN B with a random phase angle ϕ and being detected as I . The phase angle of the measured I is ψ .
Fig. 3.
Fig. 3. Monte Carlo simulation of the proposed model. The calculated standard deviation of the final phase angle is first plotted as a pseudo-color image against SNR and W in logarithmic scale in (a). The σ ψ are plotted against W in (b) and SNR in (c), respectively.
Fig. 4.
Fig. 4. Experimental verification of the proposed model. (a) A No. 1 glass coverslip was tested by both SD-OCT and SS-OCT systems. The theoretical limit of SD-OCT was calculated using Choma’s model [3]. For the SS-OCT measurements, the sampling rate was varied. We present the data against the predictions made by the proposed model with fitted parameter σ total . (b) The fitted parameter σ total was further used to linearly fit Eq. (7) to obtain the parameter l and the parameter σ system . (c) We then fixed the sampling rate of the DAQ to be 800 MS/s and changed z d by using coverslips with different thicknesses. The theoretical predictions were made by adopting the fitted parameters l and σ system in (b).
Fig. 5.
Fig. 5. Achievable phase stability of the custom-built SS-OCT at various sample depths z d and sampling rates.

Tables (1)

Tables Icon

Table 1. Fitted σ total and Other Parameters for Different Sampling Rates

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( k ) = ρ 4 [ S ( k ) R R R S cos ( 2 k z d ) + N ( k ) ] ,
I [ m ] = A [ m ] cos [ 2 ( k [ 0 ] + k m ) z d ] + B [ m ] ,
i [ n ] = 1 M m = 0 M 1 I [ m ] exp [ j 2 π m n M ] = A 2 M exp [ j 2 ( k [ 0 ] + M 1 2 k ) z d j n π M ] sin ( M k z d ) sin ( k z d n π / M ) + A 2 M exp [ j 2 ( k [ 0 ] + M 1 2 k ) z d j n π M ] sin ( M k z d ) sin ( k z d + n π / M ) + b exp ( j ϕ ) ,
β [ n = k z N M π ] = 2 ( k [ 0 ] + M 2 k ) z N + 2 ( k [ 0 ] + M 1 2 k ) δ z .
β [ n = k z N M π ] = 2 ( k [ 0 ] + M 2 k ) z N + 2 ( k [ 0 ] + M 1 2 k ) δ z + 2 ( α δ t + δ k ) z N + o ( δ t δ z ) + o ( δ k δ z ) .
P ( ψ | σ total , z N ) = π π 1 32 π 3 σ total z N 1 + b cos ( ψ ϕ ) 1 b 2 sin 2 ( ψ ϕ ) · exp [ 1 2 σ total 2 ( ψ + arcsin ( b sin ( ψ ϕ ) ) 2 z N ) 2 ] d ϕ ,
σ total 2 = α 2 σ δ t 2 + σ δ k 2 = α 2 ( l T DAQ ) 2 + σ system 2 .
W = 10 log 10 σ total k ¯ ,
SNR = 20 log 10 b .

Metrics