Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Depth-encoded optical coherence elastography for simultaneous volumetric imaging of two tissue faces

Not Accessible

Your library or personal account may give you access

Abstract

Depth-encoded optical coherence elastography (OCE) enables simultaneous acquisition of two three-dimensional (3D) elastograms from opposite sides of a sample. By the choice of suitable path-length differences in each of two interferometers, the detected carrier frequencies are separated, allowing depth-ranging from each interferometer to be performed simultaneously using a single spectrometer. We demonstrate depth-encoded OCE on a silicone phantom and a freshly excised sample of mouse liver. This technique minimizes the required spectral detection hardware and halves the total scan time. Depth-encoded OCE may expedite clinical translation in time-sensitive applications requiring rapid 3D imaging of multiple tissue surfaces, such as tumor margin assessment in breast-conserving surgery.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultrahigh-resolution optical coherence elastography

Andrea Curatolo, Martin Villiger, Dirk Lorenser, Philip Wijesinghe, Alexander Fritz, Brendan F. Kennedy, and David D. Sampson
Opt. Lett. 41(1) 21-24 (2016)

Wide-field optical coherence micro-elastography for intraoperative assessment of human breast cancer margins

Wes M. Allen, Lixin Chin, Philip Wijesinghe, Rodney W. Kirk, Bruce Latham, David D. Sampson, Christobel M. Saunders, and Brendan F. Kennedy
Biomed. Opt. Express 7(10) 4139-4153 (2016)

Optical coherence micro-elastography: mechanical-contrast imaging of tissue microstructure

Brendan F. Kennedy, Robert A. McLaughlin, Kelsey M. Kennedy, Lixin Chin, Andrea Curatolo, Alan Tien, Bruce Latham, Christobel M. Saunders, and David D. Sampson
Biomed. Opt. Express 5(7) 2113-2124 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.