Abstract

We demonstrate here an extremely simple, compact, and robust refractive index (RI) probe sensor based on a femtosecond-laser induced refractive index-modified dot (RIMD) fabricated near the end face of a single-mode fiber. The RIMD and the fiber end face form a Fabry–Perot interferometer, which is highly sensitive to surrounding RI. The fabrication process of the RIMD involves only one step and takes 0.1  s, which is extremely short, compared with other techniques. The proposed sensor exhibits an ultra-high sensitivity of 2523.2  dB/RIU at an RI of 1.435, which is one to two orders of magnitude higher than that of the existing intensity-modulated RI sensors. Moreover, the proposed sensor has the distinct advantages of compact size (50  μm), easy fabrication, and no temperature cross-sensitivity. The advantages of the device make it a promising candidate for applications in designing highly sensitive sensors in a biochemical and environmental measurement field.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast response Fabry–Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber

Jiajun Tian, Zejin Lu, Mingran Quan, Yuzhu Jiao, and Yong Yao
Opt. Express 24(18) 20132-20142 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Milenko, D. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Wolinski, H. Wei, and W. Tong, Opt. Lett. 37, 1373 (2012).
    [Crossref]
  2. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, Opt. Express 18, 141 (2010).
    [Crossref]
  3. Y. Zhang, X. P. Chen, Y. X. Wang, K. L. Cooper, and A. B. Wang, J. Lightwave Technol. 25, 1797 (2007).
    [Crossref]
  4. D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, Appl. Opt. 51, 1033 (2012).
    [Crossref]
  5. D. Donlagic and E. Cibula, Opt. Lett. 30, 2071 (2005).
    [Crossref]
  6. C. Li, Q. Liu, X. Peng, and S. Fan, Opt. Express 23, 27494 (2015).
    [Crossref]
  7. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, Opt. Express 15, 14123 (2007).
    [Crossref]
  8. Y. Liu, S. Qu, and Y. Li, Opt. Lett. 38, 335 (2013).
    [Crossref]
  9. M. Tian, P. Lu, L. Chen, D. Liu, M. Yang, and J. Zhang, Opt. Commun. 316, 80 (2014).
    [Crossref]
  10. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, Opt. Express 16, 2252 (2008).
    [Crossref]
  11. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, Opt. Lett. 24, 646 (1999).
    [Crossref]
  12. J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
    [Crossref]
  13. S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, Sens. Actuators B 161, 88 (2012).
    [Crossref]
  14. S. F. O. Silva, Opt. Eng. 47, 054403 (2008).
    [Crossref]
  15. Y. Ma, X. G. Qiao, T. Guo, R. H. Wang, J. Zhang, Y. Y. Weng, Q. Z. Rong, M. L. Hu, and Z. Y. Feng, Chin. Opt. Lett. 10, 050603 (2012).
    [Crossref]
  16. Y. Wang, D. N. Wang, M. W. Yang, W. Hong, and P. X. Lu, Opt. Lett. 34, 3328 (2009).
    [Crossref]

2015 (2)

C. Li, Q. Liu, X. Peng, and S. Fan, Opt. Express 23, 27494 (2015).
[Crossref]

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

2014 (1)

M. Tian, P. Lu, L. Chen, D. Liu, M. Yang, and J. Zhang, Opt. Commun. 316, 80 (2014).
[Crossref]

2013 (1)

2012 (4)

2010 (1)

2009 (1)

2008 (2)

2007 (2)

2005 (1)

1999 (1)

Chen, L.

M. Tian, P. Lu, L. Chen, D. Liu, M. Yang, and J. Zhang, Opt. Commun. 316, 80 (2014).
[Crossref]

Chen, X. P.

Cheng, G. H.

Chiang, K. S.

Choi, H. Y.

Cibula, E.

Cooper, K. L.

Deng, M.

Donlagic, D.

Duan, D. W.

Fan, S.

Feng, Z. Y.

Frazão, O.

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, Sens. Actuators B 161, 88 (2012).
[Crossref]

Guo, T.

He, J.

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

Hirao, K.

Hong, W.

Hou, Y. S.

Hu, D. J.

Hu, M. L.

Kazansky, P. G.

Kondo, Y.

Lee, B. H.

Li, C.

Li, Y.

Li, Z.

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

Liao, C.

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

Liao, X.

Lim, J. L.

Liu, D.

M. Tian, P. Lu, L. Chen, D. Liu, M. Yang, and J. Zhang, Opt. Commun. 316, 80 (2014).
[Crossref]

Liu, Q.

Liu, S.

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

Liu, W. J.

Liu, Y.

Lu, P.

M. Tian, P. Lu, L. Chen, D. Liu, M. Yang, and J. Zhang, Opt. Commun. 316, 80 (2014).
[Crossref]

Lu, P. X.

Ma, Y.

Malcata, F. X.

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, Sens. Actuators B 161, 88 (2012).
[Crossref]

Milenko, K.

Mitsuyu, T.

Mudhana, G.

Nouchi, K.

Paek, U. C.

Park, K. S.

Peng, X.

Qiao, X. G.

Qu, S.

Ran, Z. L.

Rao, Y. J.

Rong, Q. Z.

Santos, J. L.

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, Sens. Actuators B 161, 88 (2012).
[Crossref]

Shum, P. P.

Silva, S.

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, Sens. Actuators B 161, 88 (2012).
[Crossref]

Silva, S. F. O.

S. F. O. Silva, Opt. Eng. 47, 054403 (2008).
[Crossref]

Sun, B.

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

Tian, M.

M. Tian, P. Lu, L. Chen, D. Liu, M. Yang, and J. Zhang, Opt. Commun. 316, 80 (2014).
[Crossref]

Tong, W.

Wang, A. B.

Wang, D. N.

Wang, G.

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

Wang, R. H.

Wang, Y.

Wang, Y. X.

Watanabe, M.

Wei, H.

Weng, Y. Y.

Wolinski, T. R.

Yang, M.

M. Tian, P. Lu, L. Chen, D. Liu, M. Yang, and J. Zhang, Opt. Commun. 316, 80 (2014).
[Crossref]

Yang, M. W.

Yang, X. C.

Yin, G.

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

Zhang, J.

Zhang, T.

Zhang, Y.

Zhao, J.

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

Zhong, X.

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

Zhou, J.

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

Zhu, T.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

J. Lightwave Technol. (1)

Opt. Commun. (1)

M. Tian, P. Lu, L. Chen, D. Liu, M. Yang, and J. Zhang, Opt. Commun. 316, 80 (2014).
[Crossref]

Opt. Eng. (1)

S. F. O. Silva, Opt. Eng. 47, 054403 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Sens. Actuators B (2)

J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X. Zhong, and J. Zhao, Sens. Actuators B 208, 315 (2015).
[Crossref]

S. Silva, O. Frazão, J. L. Santos, and F. X. Malcata, Sens. Actuators B 161, 88 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the proposed fiber in-line FPI. (b) Top and (c) side view of microscope images of a FPI sample fabricated by a fs laser.

Fig. 2.
Fig. 2.

(a) Reflection spectra of the sensor measured at different RIs. (b) Simulated reflection spectrum response at different RIs.

Fig. 3.
Fig. 3.

(a) Measured and simulated fringe dip intensity at 1578 nm versus the surrounding RI and their rational fitting curves. (b) Measured and simulated RI sensitivity at different RIs.

Fig. 4.
Fig. 4.

Variation of the effective reflectance with the surrounding RI.

Fig. 5.
Fig. 5.

(a)–(c) Measured reflective spectra of FPI in regions II–IV. (d) Measured fringe dip intensity in four regions versus RI.

Fig. 6.
Fig. 6.

Linear relationship between the wavelength shift of the interference dip at 1578  nm for the sensor and ambient temperature.

Tables (1)

Tables Icon

Table 1. Comparison of the Existing Optical Fiber Intensity-Modulated RI Sensorsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I=R1+A2R2+B2R32R1R2Acos(2φ1)2R1R3Bcos(2φ1+2φ2)+2ABR2R3cos(2φ2+δ(φ)),
R1=R2=(ndotncondot+nco)2=(Δnndot+nco)2;R3=(nconexnco+nex)2.
V=ImaxIminImax+Imin=2BR3R1+AR21+(BR3R1+AR2)2.

Metrics