Abstract

Attosecond spectroscopy and precision frequency metrology depend on the stabilization of the carrier-envelope phase (CEP) of mode-locked lasers. Unfortunately, the phase of only a few types of lasers can be stabilized to jitters in the few-hundred millirad range. In a comparative experimental study, we analyze a femtosecond Ti:sapphire laser and three mode-locked fiber lasers. We numerically demodulate recorded time series of the free-running carrier-envelope beat note. Our analysis indicates a correlation between amplitude and frequency fluctuations at low Fourier frequencies for essentially all lasers investigated. While this correlation typically rolls off at frequencies beyond 100 kHz, we see clear indications for a broadband coupling mechanism in one of the fiber lasers. We suspect that the observed coupling mechanism acts to transfer intracavity power fluctuations into excess phase noise. This coupling mechanism is related to the mode-locking mechanism employed and not to the gain medium itself. We further verify this hypothesis by numerical simulations, which identify resonances of the saturable absorber mirror as a possible explanation for the coupling mechanism. Finally, we discuss how to avoid a detrimental influence of such resonances.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On the origin of flicker noise in carrier-envelope phase stabilization

Youjian Song, Fabian Lücking, Bastian Borchers, and Günter Steinmeyer
Opt. Lett. 39(24) 6989-6992 (2014)

Nonlinear phase noise generated in air–silica microstructure fiber and its effect on carrier-envelope phase

Tara M. Fortier, Jun Ye, Steven T. Cundiff, and Robert S. Windeler
Opt. Lett. 27(6) 445-447 (2002)

Solid-state carrier-envelope-phase noise measurements with intrinsically balanced detection

Peter A. Roos, Xiaoqin Li, Jessica A. Pipis, and Steven T. Cundiff
Opt. Express 12(18) 4255-4260 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription