Abstract

We use a drift-diffusion model to study frequency dependent harmonic powers in a modified uni-traveling carrier (MUTC) phododetector. The model includes external loading, incomplete ionization, the Franz–Keldysh effect, and history-dependent impact ionization. In three-tone measurements, the bias voltage at which a null occurs (bias null) in the second-order intermodulation distortion (IMD2) is different for the sum frequency and difference frequency. We obtained agreement with the experimental results. The bias null that appears in the IMD2 is due to the Franz–Keldysh effect. The bias voltage at which the bias null is located depends on the electric field in the intrinsic region, and the difference in the location of the bias null for the sum frequency and difference frequency is due to the displacement current in the intrinsic region. When the frequency is large, the displacement current is large and has a large effect on the harmonic powers. We also found that the bias null depends on the recombination rate in the p-absorption region because the electric field decreases in the intrinsic region when the recombination rate in the p-region decreases.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Si/Ge uni-traveling carrier photodetector

Molly Piels and John E. Bowers
Opt. Express 20(7) 7488-7495 (2012)

Simulation of a partially depleted absorber (PDA) photodetector

Yue Hu, Thomas F. Carruthers, Curtis R. Menyuk, Meredith N. Hutchinson, Vincent J. Urick, and Keith J. Williams
Opt. Express 23(16) 20402-20417 (2015)

High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode

Zhi Li, Yang Fu, Molly Piels, Huapu Pan, Andreas Beling, John E. Bowers, and Joe C. Campbell
Opt. Express 19(26) B385-B390 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Hutchinson, S. Estrella, and M. Mashanovitch, in IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP) (2016), paper WA2.2.
  2. N. J. Frigo, M. N. Hutchinson, and J. R. Peasant, J. Lightwave Technol. 34, 4696 (2016).
    [Crossref]
  3. N. B. D. Carvalho and J. C. Pedro, IEEE Trans. Microw. Theory Tech. 47, 2364 (1999).
    [Crossref]
  4. N. B. D. Carvalho and J. C. Pedro, IEEE Trans. Microw. Theory Tech. 50, 2090 (2002).
    [Crossref]
  5. Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 46, 626 (2010).
    [Crossref]
  6. M. N. Draa, A. S. Hastings, and K. J. Williams, Opt. Express 19, 12635 (2011).
    [Crossref]
  7. Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 47, 1312 (2011).
    [Crossref]
  8. Y. Hu, B. S. Marks, C. R. Menyuk, V. J. Urick, and K. J. Williams, J. Lightwave Technol. 32, 3710 (2014).
    [Crossref]
  9. Y. Hu, T. F. Carruthers, C. R. Menyuk, M. N. Hutchinson, V. J. Urick, and K. J. Williams, Opt. Express 23, 20402 (2015).
    [Crossref]
  10. Y. Hu and C. R. Menyuk, International Topical Meeting on Microwave Photonics (MWP) (2013), pp. 282–285.

2016 (1)

2015 (1)

2014 (1)

2011 (2)

M. N. Draa, A. S. Hastings, and K. J. Williams, Opt. Express 19, 12635 (2011).
[Crossref]

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 47, 1312 (2011).
[Crossref]

2010 (1)

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 46, 626 (2010).
[Crossref]

2002 (1)

N. B. D. Carvalho and J. C. Pedro, IEEE Trans. Microw. Theory Tech. 50, 2090 (2002).
[Crossref]

1999 (1)

N. B. D. Carvalho and J. C. Pedro, IEEE Trans. Microw. Theory Tech. 47, 2364 (1999).
[Crossref]

Beling, A.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 47, 1312 (2011).
[Crossref]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 46, 626 (2010).
[Crossref]

Campbell, J. C.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 47, 1312 (2011).
[Crossref]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 46, 626 (2010).
[Crossref]

Carruthers, T. F.

Carvalho, N. B. D.

N. B. D. Carvalho and J. C. Pedro, IEEE Trans. Microw. Theory Tech. 50, 2090 (2002).
[Crossref]

N. B. D. Carvalho and J. C. Pedro, IEEE Trans. Microw. Theory Tech. 47, 2364 (1999).
[Crossref]

Chen, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 46, 626 (2010).
[Crossref]

Draa, M. N.

Estrella, S.

M. N. Hutchinson, S. Estrella, and M. Mashanovitch, in IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP) (2016), paper WA2.2.

Frigo, N. J.

Fu, Y.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 47, 1312 (2011).
[Crossref]

Hastings, A. S.

Hu, Y.

Hutchinson, M. N.

Li, Z.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 47, 1312 (2011).
[Crossref]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 46, 626 (2010).
[Crossref]

Marks, B. S.

Mashanovitch, M.

M. N. Hutchinson, S. Estrella, and M. Mashanovitch, in IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP) (2016), paper WA2.2.

Menyuk, C. R.

Pan, H.

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 47, 1312 (2011).
[Crossref]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 46, 626 (2010).
[Crossref]

Peasant, J. R.

Pedro, J. C.

N. B. D. Carvalho and J. C. Pedro, IEEE Trans. Microw. Theory Tech. 50, 2090 (2002).
[Crossref]

N. B. D. Carvalho and J. C. Pedro, IEEE Trans. Microw. Theory Tech. 47, 2364 (1999).
[Crossref]

Urick, V. J.

Williams, K. J.

IEEE J. Quantum Electron. (2)

Y. Fu, H. Pan, Z. Li, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 47, 1312 (2011).
[Crossref]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, IEEE J. Quantum Electron. 46, 626 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

N. B. D. Carvalho and J. C. Pedro, IEEE Trans. Microw. Theory Tech. 47, 2364 (1999).
[Crossref]

N. B. D. Carvalho and J. C. Pedro, IEEE Trans. Microw. Theory Tech. 50, 2090 (2002).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (2)

Other (2)

Y. Hu and C. R. Menyuk, International Topical Meeting on Microwave Photonics (MWP) (2013), pp. 282–285.

M. N. Hutchinson, S. Estrella, and M. Mashanovitch, in IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP) (2016), paper WA2.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Structure of the MUTC photodetector. Green indicates the absorption regions, which include an intrinsic region and a p-doped region. Red indicates highly doped InP layers; purple indicates highly doped InGaAs layers; and white indicate other layers.

Fig. 2.
Fig. 2.

Measured and calculated fundamental and IMD2 powers as a function of reverse bias for input frequencies F1=4.9  GHz, F2=5.0  GHz, and F3=5.15  GHz.

Fig. 3.
Fig. 3.

Calculated fundamental and IMD2 powers as a function of reverse bias for input frequencies F1=4.9  GHz, F2=5.0  GHz, and F3=5.15  GHz. The Franz–Keldysh effect is not included in the simulation.

Fig. 4.
Fig. 4.

Calculated fundamental and IMD2 powers as a function of reverse bias for input frequencies F1=4.9  GHz, F2=5.0  GHz, and F3=5.15  GHz. (a) Displacement current is not included in the total current. (b) IMD2 power of the displacement current.

Fig. 5.
Fig. 5.

Amplitude of the sinusoidally varying displacement current in the device at 200 MHz and 5 GHz.

Fig. 6.
Fig. 6.

Calculated fundamental and IMD2 powers as a function of reverse bias for input frequencies F1=4.9  GHz, F2=5.0  GHz, and F3=5.15  GHz. The lifetime in the p-region is 5×1011  s. (a) IMD2 power of the total current. (b) IMD2 power of the displacement current.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

(nND+)t=Gi+GLR(n,p)+·Jnq,
(pNA)t=Gi+GLR(n,p)·Jpq,
·E=qϵ(ND++pnNA),
GL=G0{1+md[sin(2πF1t)+sin(2πF2t)+sin(2πF3t)]},

Metrics