Abstract

High optical quality of potassium terbium fluoride, KTb3F10 (KTF), crystals are characterized and tested for extinction at high laser powers up to 400 W. The measured Verdet constant of the crystal is comparable with that of terbium gallium garnet (TGG) crystal. KTF crystals show high extinction at high incident power and an order of magnitude smaller absorption with respect to TGG, making it a superior crystal for high laser power applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and characterization of cerium-doped terbium gallium garnet with high magneto-optical properties

Zhe Chen, Yin Hang, Lei Yang, Jun Wang, Xiangyong Wang, Jiaqi Hong, Peixiong Zhang, Chunjun Shi, and Yaqi Wang
Opt. Lett. 40(5) 820-822 (2015)

Terbium gallium garnet ceramic Faraday rotator for high-power laser application

Ryo Yasuhara, Ilya Snetkov, Alexey Starobor, Dmitry Zheleznov, Oleg Palashov, Efim Khazanov, Hoshiteru Nozawa, and Takagimi Yanagitani
Opt. Lett. 39(5) 1145-1148 (2014)

Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power

Efim Khazanov, Nicolay Andreev, Oleg Palashov, Anatoly Poteomkin, Alexander Sergeev, Oliver Mehl, and David H. Reitze
Appl. Opt. 41(3) 483-492 (2002)

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner and D. K. Rice, J. Opt. Soc. Am. 61, 758 (1971).
    [Crossref]
  2. E. Khazanov, Quantum Electron. 29, 59 (1999).
    [Crossref]
  3. E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
    [Crossref]
  4. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, Appl. Opt. 41, 483 (2002).
    [Crossref]
  5. O. V. Palashov, D. S. Zheleznov, A. V. Voitovich, V. V. Zelenogorsky, E. E. Kamenetsky, E. A. Khazanov, R. M. Martin, K. L. Dooley, L. Williams, A. Lucianetti, V. Quetschke, G. Mueller, D. H. Reitze, D. B. Tanner, E. Genin, B. Canuel, and J. Marque, J. Opt. Soc. Am. B 29, 1784 (2012).
    [Crossref]
  6. A. A. Jalali, J. Rybarsyk, and E. Rogers, Opt. Express 21, 13741 (2013).
    [Crossref]
  7. E. A. Mironov and O. V. Palashov, Opt. Express 22, 23226 (2014).
    [Crossref]
  8. A. Starobor, D. Zheleznov, O. Palashov, C. Chen, S. Zhou, and R. Yasuhara, Opt. Mater. Express 4, 2127 (2014).
    [Crossref]
  9. I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, IEEE J. Quantum Electron. 50, 434 (2014).
    [Crossref]
  10. M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 3464 (1978).
    [Crossref]
  11. J. A. Griffin, J. Folkins, M. J. Weber, R. Morgret, J. D. Litster, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 2209 (1978).
    [Crossref]
  12. K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, Laser Technol. J. 13, 18 (2016).
  13. V. Loriette and C. Boccara, Appl. Opt. 42, 649 (2003).
    [Crossref]
  14. A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, Proc. SPIE 7193, 71930D (2009).
    [Crossref]
  15. The Vigro Collaboration, Appl. Opt. 47, 5853 (2008).
    [Crossref]
  16. I. Snetkov, A. Vyatkin, O. Palashov, and E. Khazanov, Opt. Express 20, 13357 (2012).
    [Crossref]
  17. R. E. Joiner, J. Marburger, and W. H. Steier, Appl. Phys. Lett. 30, 485 (1977).
    [Crossref]

2016 (1)

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, Laser Technol. J. 13, 18 (2016).

2014 (3)

2013 (1)

2012 (2)

2009 (1)

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, Proc. SPIE 7193, 71930D (2009).
[Crossref]

2008 (1)

2003 (1)

2002 (1)

1999 (2)

E. Khazanov, Quantum Electron. 29, 59 (1999).
[Crossref]

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[Crossref]

1978 (2)

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 3464 (1978).
[Crossref]

J. A. Griffin, J. Folkins, M. J. Weber, R. Morgret, J. D. Litster, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 2209 (1978).
[Crossref]

1977 (1)

R. E. Joiner, J. Marburger, and W. H. Steier, Appl. Phys. Lett. 30, 485 (1977).
[Crossref]

1971 (1)

Alexandrovski, A.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, Proc. SPIE 7193, 71930D (2009).
[Crossref]

Andreev, N.

Boccara, C.

Canuel, B.

Chen, C.

Dooley, K. L.

Fejer, M.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, Proc. SPIE 7193, 71930D (2009).
[Crossref]

Folkins, J.

J. A. Griffin, J. Folkins, M. J. Weber, R. Morgret, J. D. Litster, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 2209 (1978).
[Crossref]

Foundos, G.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, Laser Technol. J. 13, 18 (2016).

Gabbe, D.

J. A. Griffin, J. Folkins, M. J. Weber, R. Morgret, J. D. Litster, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 2209 (1978).
[Crossref]

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 3464 (1978).
[Crossref]

Genin, E.

Griffin, J. A.

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 3464 (1978).
[Crossref]

J. A. Griffin, J. Folkins, M. J. Weber, R. Morgret, J. D. Litster, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 2209 (1978).
[Crossref]

Jalali, A. A.

Joiner, R. E.

R. E. Joiner, J. Marburger, and W. H. Steier, Appl. Phys. Lett. 30, 485 (1977).
[Crossref]

Kamenetsky, E. E.

Khazanov, E.

Khazanov, E. A.

Koechner, W.

Kulagin, O.

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[Crossref]

Leung, S. Y.

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 3464 (1978).
[Crossref]

Linz, A.

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 3464 (1978).
[Crossref]

J. A. Griffin, J. Folkins, M. J. Weber, R. Morgret, J. D. Litster, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 2209 (1978).
[Crossref]

Litster, J. D.

J. A. Griffin, J. Folkins, M. J. Weber, R. Morgret, J. D. Litster, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 2209 (1978).
[Crossref]

Loriette, V.

Lucianetti, A.

Marburger, J.

R. E. Joiner, J. Marburger, and W. H. Steier, Appl. Phys. Lett. 30, 485 (1977).
[Crossref]

Markosian, A.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, Proc. SPIE 7193, 71930D (2009).
[Crossref]

Marque, J.

Martin, R. M.

Mehl, O.

Mironov, E. A.

Morgret, R.

J. A. Griffin, J. Folkins, M. J. Weber, R. Morgret, J. D. Litster, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 2209 (1978).
[Crossref]

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 3464 (1978).
[Crossref]

Mueller, G.

Palashov, O.

Palashov, O. V.

Payne, A.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, Laser Technol. J. 13, 18 (2016).

Poteomkin, A.

Quetschke, V.

Reitze, D.

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[Crossref]

Reitze, D. H.

Rice, D. K.

Rogers, E.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, Laser Technol. J. 13, 18 (2016).

A. A. Jalali, J. Rybarsyk, and E. Rogers, Opt. Express 21, 13741 (2013).
[Crossref]

Route, R.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, Proc. SPIE 7193, 71930D (2009).
[Crossref]

Rybarsyk, J.

Schlichting, W.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, Laser Technol. J. 13, 18 (2016).

Sergeev, A.

Snetkov, I.

Snetkov, I. L.

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, IEEE J. Quantum Electron. 50, 434 (2014).
[Crossref]

Starobor, A.

Steier, W. H.

R. E. Joiner, J. Marburger, and W. H. Steier, Appl. Phys. Lett. 30, 485 (1977).
[Crossref]

Stevens, K. T.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, Laser Technol. J. 13, 18 (2016).

Tanner, D.

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[Crossref]

Tanner, D. B.

Voitovich, A. V.

Vyatkin, A.

Weber, M. J.

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 3464 (1978).
[Crossref]

J. A. Griffin, J. Folkins, M. J. Weber, R. Morgret, J. D. Litster, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 2209 (1978).
[Crossref]

Williams, L.

Yasuhara, R.

Yoshida, S.

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[Crossref]

Zelenogorsky, V. V.

Zheleznov, D.

Zheleznov, D. S.

Zhou, S.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

R. E. Joiner, J. Marburger, and W. H. Steier, Appl. Phys. Lett. 30, 485 (1977).
[Crossref]

IEEE J. Quantum Electron. (2)

E. Khazanov, O. Kulagin, S. Yoshida, D. Tanner, and D. Reitze, IEEE J. Quantum Electron. 35, 1116 (1999).
[Crossref]

I. L. Snetkov, A. V. Voitovich, O. V. Palashov, and E. A. Khazanov, IEEE J. Quantum Electron. 50, 434 (2014).
[Crossref]

J. Appl. Phys. (2)

M. J. Weber, R. Morgret, S. Y. Leung, J. A. Griffin, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 3464 (1978).
[Crossref]

J. A. Griffin, J. Folkins, M. J. Weber, R. Morgret, J. D. Litster, D. Gabbe, and A. Linz, J. Appl. Phys. 49, 2209 (1978).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Laser Technol. J. (1)

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, Laser Technol. J. 13, 18 (2016).

Opt. Express (3)

Opt. Mater. Express (1)

Proc. SPIE (1)

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, Proc. SPIE 7193, 71930D (2009).
[Crossref]

Quantum Electron. (1)

E. Khazanov, Quantum Electron. 29, 59 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Fabricated samples of KTF crystals.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup for depolarization ratio measurement. 1, laser source; 2, polarizers; 3, half-wave plates; 4, optic crystals with or without magnet; 5, thermopile power meter or CCD camera; 6, beam dumps.

Fig. 3.
Fig. 3.

KTF[100] crystal was tested for extinction at elevated powers, (a) without external magnetic field, (b) inside a magnet with 1.3 T field. A 2.1 mm diameter Gaussian beam with M2=1.1 was incident at normal angle on a 5.6 mm by 20 mm KTF[100] crystal. The experimental data (dots) have been fitted to the theoretical curve shown by lines.

Fig. 4.
Fig. 4.

4.1 mm by 20 mm KTF[100] crystal extinction versus laser power. The experimental data (dots) have been fitted to the theoretical curve shown by lines.

Fig. 5.
Fig. 5.

Absorption measurement of KTF[111] and TGG[111] crystals by PCI method.

Fig. 6.
Fig. 6.

KTF[111] crystals were tested for extinction at 370 W of laser power versus crystal rotation around its axis. A TGG[111] crystal is also shown for comparison.

Tables (2)

Tables Icon

Table 1. Magneto-Optical and Thermal Properties of KTF Crystala

Tables Icon

Table 2. KTF Crystal Parameters Measured at Laser Power of Up to 400 Wa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

γ=2π2δ2sin(2ψπ4),
ξ=2p44p11p12.
γ[100]=p2π2A(1+(ξ21)cos2(2θπ4)),
γ[111]=p29π2A(1+2ξ)2,
p=αQLkλP0.

Metrics