Abstract

The repetition rate of a Kerr comb composed of a single soliton in an anomalous group velocity dispersion silicon-nitride microcavity is measured as a function of pump frequency. By comparing operation in the soliton and non-soliton states, the contributions from the Raman soliton self-frequency shift (SSFS) and the thermal effects are evaluated; the SSFS is found to dominate the changes in the repetition rate, similar to silica cavities. The relationship between the changes in the repetition rate and the pump frequency detuning is found to be independent of the nonlinearity coefficient and dispersion of the cavity. Modeling of the repetition rate change by using the generalized Lugiato–Lefever equation is discussed; the Kerr shock is found to have only a minor effect on repetition rate for cavity solitons with duration down to 50  fs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterizing pump line phase offset of a single-soliton Kerr comb by dual comb interferometry

Ziyun Kong, Chengying Bao, Oscar E. Sandoval, Bohao Liu, Cong Wang, Jose A. Jaramillo-Villegas, Minghao Qi, and Andrew M. Weiner
Opt. Lett. 44(6) 1460-1463 (2019)

Universal scaling laws of Kerr frequency combs

Stéphane Coen and Miro Erkintalo
Opt. Lett. 38(11) 1790-1792 (2013)

Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model

Stéphane Coen, Hamish G. Randle, Thibaut Sylvestre, and Miro Erkintalo
Opt. Lett. 38(1) 37-39 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription