Abstract

We demonstrate a nonlinear optical resonator that tunes itself onto resonance with an input beam. In a monolithic Fabry–Perot cavity implemented in rubidium-doped periodically poled potassium titanyl phosphate, an intensity-dependent refractive index produces line pulling by multiple free-spectral ranges (FSRs). In this condition, the cavity passively maintains optical resonance in the face of FSR-scale excursions of the drive laser frequency: when one resonant operating point becomes unstable, the resonator rapidly transitions to another resonant operating point. We demonstrate stable second-harmonic generation with no active feedback to the laser or cavity. The self-tuning effect appears to be supported by a very strong, previously unreported optical nonlinearity.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adiabatic self-tuning in a silicon microdisk optical resonator

Q. Lin, T. J. Johnson, C. P. Michael, and O. Painter
Opt. Express 16(19) 14801-14811 (2008)

Stabilization and tuning of a doubly resonant optical parametric oscillator

D. Lee and N. C. Wong
J. Opt. Soc. Am. B 10(9) 1659-1667 (1993)

Atom-resonant squeezed light from a tunable monolithic ppRKTP parametric amplifier

Joanna A. Zielińska and Morgan W. Mitchell
Opt. Lett. 43(4) 643-646 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
    [Crossref]
  2. F. T. S. Yu and S. Jutamulia, Optical Signal Processing, Computing, and Neural Networks, 1st ed. (Wiley, 1992).
  3. R. Yu, S. Cheung, Y. Li, K. Okamoto, R. Proietti, Y. Yin, and S. J. B. Yoo, Opt. Express 21, 32655 (2013).
    [Crossref]
  4. W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, Nat. Photonics 10, 190 (2016).
    [Crossref]
  5. J. A. Zielińska, A. Zukauskas, C. Canalias, M. A. Noyan, and M. W. Mitchell, Opt. Express 25, 1142 (2017).
    [Crossref]
  6. A. Zukauskas, V. Pasiskevicius, and C. Canalias, Opt. Express 21, 1395 (2013).
    [Crossref]
  7. K. Kato and E. Takaoka, Appl. Opt. 41, 5040 (2002).
    [Crossref]
  8. S. Tjörnhammar, V. Maestroni, A. Zukauskas, T. K. Uždavinys, C. Canalias, F. Laurell, and V. Pasiskevicius, Opt. Mater. Express 5, 2951 (2015).
    [Crossref]
  9. J. K. Tyminski, J. Appl. Phys. 70, 5570 (1991).
    [Crossref]
  10. P. Günter and J. Huignard, Photorefractive Materials and Their Applications 3: Applications (Springer, 2007).

2017 (1)

2016 (1)

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, Nat. Photonics 10, 190 (2016).
[Crossref]

2015 (1)

2013 (2)

2002 (1)

1991 (1)

J. K. Tyminski, J. Appl. Phys. 70, 5570 (1991).
[Crossref]

1989 (1)

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[Crossref]

Canalias, C.

Cheung, S.

Coldren, L. A.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, Nat. Photonics 10, 190 (2016).
[Crossref]

Günter, P.

P. Günter and J. Huignard, Photorefractive Materials and Their Applications 3: Applications (Springer, 2007).

Guzzon, R. S.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, Nat. Photonics 10, 190 (2016).
[Crossref]

Huignard, J.

P. Günter and J. Huignard, Photorefractive Materials and Their Applications 3: Applications (Springer, 2007).

Jutamulia, S.

F. T. S. Yu and S. Jutamulia, Optical Signal Processing, Computing, and Neural Networks, 1st ed. (Wiley, 1992).

Kato, K.

Laurell, F.

Li, M.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, Nat. Photonics 10, 190 (2016).
[Crossref]

Li, Y.

Liu, W.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, Nat. Photonics 10, 190 (2016).
[Crossref]

Lu, M.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, Nat. Photonics 10, 190 (2016).
[Crossref]

Maestroni, V.

Mitchell, M. W.

Norberg, E. J.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, Nat. Photonics 10, 190 (2016).
[Crossref]

Noyan, M. A.

Okamoto, K.

Parker, J. S.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, Nat. Photonics 10, 190 (2016).
[Crossref]

Parthenopoulos, D. A.

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[Crossref]

Pasiskevicius, V.

Proietti, R.

Rentzepis, P. M.

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[Crossref]

Takaoka, E.

Tjörnhammar, S.

Tyminski, J. K.

J. K. Tyminski, J. Appl. Phys. 70, 5570 (1991).
[Crossref]

Uždavinys, T. K.

Yao, J.

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, Nat. Photonics 10, 190 (2016).
[Crossref]

Yin, Y.

Yoo, S. J. B.

Yu, F. T. S.

F. T. S. Yu and S. Jutamulia, Optical Signal Processing, Computing, and Neural Networks, 1st ed. (Wiley, 1992).

Yu, R.

Zielinska, J. A.

Zukauskas, A.

Appl. Opt. (1)

J. Appl. Phys. (1)

J. K. Tyminski, J. Appl. Phys. 70, 5570 (1991).
[Crossref]

Nat. Photonics (1)

W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, Nat. Photonics 10, 190 (2016).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Science (1)

D. A. Parthenopoulos and P. M. Rentzepis, Science 245, 843 (1989).
[Crossref]

Other (2)

F. T. S. Yu and S. Jutamulia, Optical Signal Processing, Computing, and Neural Networks, 1st ed. (Wiley, 1992).

P. Günter and J. Huignard, Photorefractive Materials and Their Applications 3: Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup. The abbreviation DC means dichroic mirror, and detectors DR and DB collect 795 (red) and 397 nm (blue) light.
Fig. 2.
Fig. 2. Red and blue curves show fundamental and SH intracavity power versus pump laser frequency which is scanned over a 2.5 cavity FSR for 795 nm. The scan speed is 10 s per FSR, and each graph corresponds to a different pump power, as indicated. Both red and blue intracavity powers are estimated from the respective output power and output coupler transmission values. The red output coupler is calibrated by measuring the output at resonance for known input power and finesse.
Fig. 3.
Fig. 3. Red and blue curves show fundamental and SH intracavity power versus pump laser frequency which is scanned over a 3 cavity FSR for 795 nm. The pump power is set to 250 mW; the graphs correspond to different scan speeds. (A total duration of the 3 FSR scan is indicated on each graph.) Both red and blue intracavity powers are estimated from the respective output power and output coupler transmission values.
Fig. 4.
Fig. 4. Model results illustrating self-locking by the photo-Kerr effect. Upper part: intracavity power of fundamental (red) and SH (blue) wavelengths as the fundamental pump frequency is scanned. Conditions: scan rate 10 s per FSR, 250 mW input power, active section at the phase-matching temperature. Middle part: Kerr coefficient κ (green dashed curve) and refractive index change δn=κ|A1|2 (black curve). The cavity spectrum shift is proportional to δn. Lower part: cavity transmission for the fundamental at five representative points of the scan (marked in the upper part).
Fig. 5.
Fig. 5. Cavity scans calculated from the model for powers 31 (green), 58, 92, 128, 175, 215, and 250 mW (red) and scan duration of 30 s. The curves are offset with baselines indicated by dotted lines.
Fig. 6.
Fig. 6. Cavity scans calculated from the model for scan durations 15 (green), 30, 45, 60, and 75 s (red) for pump input power of 250 mW. The curves are offset with baselines indicated by dotted lines.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

zA1(z)=ic1A2(z)A1(z)*eik2z2ik1(z)z,
zA2(z)=ic2A1(z)2eik2z+2ik1(z)z,
tκ=Γκ+f|A1|2,
κj+1=Mκj+FP1(j),

Metrics