Abstract

We present an experimental and numerical study on the spectrally resolved pump-to-output intensity noise coupling in soliton fiber oscillators. In our study, we observe a strong pump noise coupling to the Kelly sidebands, while the coupling to the soliton pulse is damped. This behavior is observed in erbium-doped as well as holmium-doped fiber oscillators and confirmed by numerical modeling. It can be seen as a general feature of laser oscillators in which soliton pulse formation is dominant. We show that spectral blocking of the Kelly sidebands outside the laser cavity can improve the intensity noise performance of the laser dramatically.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave-induced resonant spectral sidebands in soliton fiber lasers

Yueqing Du and Xuewen Shu
Opt. Lett. 43(2) 263-266 (2018)

Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications

Jungwon Kim and Youjian Song
Adv. Opt. Photon. 8(3) 465-540 (2016)

Intensity and temporal noise characteristics in femtosecond optical parametric amplifiers

Wei Chen, Jintao Fan, Aichen Ge, Huanyu Song, Youjian Song, Bowen Liu, Lu Chai, Chingyue Wang, and Minglie Hu
Opt. Express 25(25) 31263-31272 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription