Abstract

In this Letter, we numerically demonstrate the all-optical generation of uniformly oriented in-plane magnetization with near-unity purity (more than 99%) under a 4π microscopic configuration. This is achieved through focusing two counter-propagating vector beams consisting of coherently configured linear and radial components. Based on the Debye diffraction theory, constructive and destructive interferences of the focal field components can be tailored under the 4π configuration to generate high-purity uniformly polarized transverse and longitudinal electric-field components in the center of the focal region. Consequently, near-unity purity in-plane magnetization with a uniform orientation within the focal volume defined by the full width at half-maximum can be created through the inverse Faraday effect. In addition, it reveals that the purity of the in-plane magnetization is robust against the numerical aperture of the focal lens. This result expands the flexibility of magnetization manipulations through light and holds great potential in all-optical magnetic recording and spintronics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical generation of magnetization with arbitrary three-dimensional orientations

Sicong Wang, Jianjun Luo, Zhuqing Zhu, Yaoyu Cao, Haiwei Wang, Changsheng Xie, and Xiangping Li
Opt. Lett. 43(22) 5551-5554 (2018)

Spherical and sub-wavelength longitudinal magnetization generated by 4π tightly focusing radially polarized vortex beams

Zhongquan Nie, Weiqiang Ding, Dongyu Li, Xueru Zhang, Yuxiao Wang, and Yinglin Song
Opt. Express 23(2) 690-701 (2015)

Three-dimensional magnetization needle arrays with controllable orientation

Jianjun Luo, Henwen Zhang, Sicong Wang, Liu Shi, Zhuqing Zhu, Bing Gu, Xiaolei Wang, and Xiangping Li
Opt. Lett. 44(4) 727-730 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription