Abstract

Combustion research requires detailed localized information on the dynamic combustion conditions to improve the accuracy of the simulations and, hence, improve the performance of the combustion processes. We have applied chemical reaction kinetics of potassium to measure the local temperature and O2 concentration in flue gas. An excess of free atomic potassium is created in the measurement volume by a photofragmenting precursor molecule such as potassium chloride or KOH which are widely released from solid fuels. The decay of the induced potassium concentration is followed with an absorption measurement using a narrow-linewidth diode laser. The temperature and O2 concentration are solved from the decay curve features using equations obtained from calibration measurements in a temperature range of 800°C–1000°C and in O2 concentrations of 0.1%–21%. The local flue gas temperature and O2 concentration were recorded in real time during devolatilization, char burning, and ash cooking phases of combustion in a single-particle reactor with a 5 Hz repetition rate. The method can be further extended to other target species and applications where the chemical dynamics can be disturbed with photofragmentation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stereoscopic pyrometer for char combustion characterization

M. Schiemann, N. Vorobiev, and V. Scherer
Appl. Opt. 54(5) 1097-1108 (2015)

Optical detection of potassium chloride vapor using collinear photofragmentation and atomic absorption spectroscopy

Tapio Sorvajärvi, Jaakko Saarela, and Juha Toivonen
Opt. Lett. 37(19) 4011-4013 (2012)

Carbon dioxide laser monitor for NH3 in flue gas

Alexander Stein, T. R. Todd, and B. N. Perry
Appl. Opt. 22(21) 3378-3381 (1983)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription