Abstract

We introduce a computationally efficient structured low-rank algorithm for the reconstruction of two-dimensional infrared (2D IR) spectroscopic data from few measurements. The signal is modeled as a combination of exponential lineshapes that are annihilated by appropriately chosen filters. The annihilation relations result in a low-rank constraint on a Toeplitz matrix constructed from signal samples, which is exploited to recover the unknown signal samples. Quantitative and qualitative studies on simulated and experimental data demonstrate that the algorithm outperforms the discrete compressed sensing algorithm, both in uniform and non-uniform sampling settings.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast pH-jump two-dimensional infrared spectroscopy

Jennifer C. Flanagan and Carlos R. Baiz
Opt. Lett. 44(20) 4937-4940 (2019)

Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy

Lifeng Chen, Martin Lopez-Garcia, Mike P. C. Taverne, Xu Zheng, Ying-Lung D. Ho, and John Rarity
Opt. Lett. 42(8) 1584-1587 (2017)

Characterization of two ultrashort laser pulses using interferometric imaging of self-diffraction

Christoph Leithold, Jan Reislöhner, Holger Gies, and Adrian N. Pfeiffer
Opt. Lett. 42(24) 5246-5249 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription