Abstract

We propose multiple-frequency-spaced flat optical comb generation using an electro-optic (EO) multiple-parallel phase modulator. We formulate and clarify the operating conditions in which we can generate optical combs adding the two important functionalities of spectral shaping: (1) multiplication of frequency spacing and (2) spectral flattening. The frequency spacing of the generated comb is enhanced much higher than the EO modulation bandwidth. The spectral shaping is achieved fully through the EO modulation process without relying on any optical filters. This filter-less configuration is advantageous for flexible tuning of wavelength and frequency spacing of the generated combs. The concept is numerically verified, focusing on N×25-GHz-spaced comb generation.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach–Zehnder modulator

Qiang Wang, Li Huo, Yanfei Xing, and Bingkun Zhou
Opt. Lett. 39(10) 3050-3053 (2014)

Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms

Rui Wu, V. R. Supradeepa, Christopher M. Long, Daniel E. Leaird, and Andrew M. Weiner
Opt. Lett. 35(19) 3234-3236 (2010)

Generation of an optical frequency comb with a Gaussian spectrum using a linear time-to-space mapping system

Shintaro Hisatake, Keiji Tada, and Tadao Nagatsuma
Opt. Express 18(5) 4748-4757 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
    [Crossref]
  2. M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, Electron. Lett. 37, 967 (2001).
    [Crossref]
  3. T. Sakamoto, T. Kawanishi, and M. Izutsu, Opt. Lett. 32, 1515 (2007).
    [Crossref]
  4. T. Hoshi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Conference on Laser and Electro Optics/Pacific Rim (2007), paper ThD2-3.
  5. T. Sakamoto, in IEEE Photonics Conference (IPC) (2016), paper WF3.6.
  6. T. Sakamoto and A. Chiba, IEEE J. Sel. Top. Quantum Electron. 16, 1140 (2010).
    [Crossref]
  7. P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, Y. Baeyens, and Y. Chen, in Optical Fiber Communication Conference (OFC) (2013), paper PDP5C.6.

2010 (1)

T. Sakamoto and A. Chiba, IEEE J. Sel. Top. Quantum Electron. 16, 1140 (2010).
[Crossref]

2007 (1)

2001 (1)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, Electron. Lett. 37, 967 (2001).
[Crossref]

1994 (1)

M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[Crossref]

Araya, K.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, Electron. Lett. 37, 967 (2001).
[Crossref]

Aroca, R.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, Y. Baeyens, and Y. Chen, in Optical Fiber Communication Conference (OFC) (2013), paper PDP5C.6.

Baeyens, Y.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, Y. Baeyens, and Y. Chen, in Optical Fiber Communication Conference (OFC) (2013), paper PDP5C.6.

Buhl, L.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, Y. Baeyens, and Y. Chen, in Optical Fiber Communication Conference (OFC) (2013), paper PDP5C.6.

Chandrasekhar, S.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, Y. Baeyens, and Y. Chen, in Optical Fiber Communication Conference (OFC) (2013), paper PDP5C.6.

Chen, Y.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, Y. Baeyens, and Y. Chen, in Optical Fiber Communication Conference (OFC) (2013), paper PDP5C.6.

Chiba, A.

T. Sakamoto and A. Chiba, IEEE J. Sel. Top. Quantum Electron. 16, 1140 (2010).
[Crossref]

Dong, P.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, Y. Baeyens, and Y. Chen, in Optical Fiber Communication Conference (OFC) (2013), paper PDP5C.6.

Enami, T.

M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[Crossref]

Fujiwara, M.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, Electron. Lett. 37, 967 (2001).
[Crossref]

Hoshi, T.

T. Hoshi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Conference on Laser and Electro Optics/Pacific Rim (2007), paper ThD2-3.

Izutsu, M.

Kani, J.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, Electron. Lett. 37, 967 (2001).
[Crossref]

Kawanishi, T.

Kourogi, M.

M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[Crossref]

Kurokawa, T.

T. Hoshi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Conference on Laser and Electro Optics/Pacific Rim (2007), paper ThD2-3.

Liu, X.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, Y. Baeyens, and Y. Chen, in Optical Fiber Communication Conference (OFC) (2013), paper PDP5C.6.

Ohtsu, M.

M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[Crossref]

Sakamoto, T.

T. Sakamoto and A. Chiba, IEEE J. Sel. Top. Quantum Electron. 16, 1140 (2010).
[Crossref]

T. Sakamoto, T. Kawanishi, and M. Izutsu, Opt. Lett. 32, 1515 (2007).
[Crossref]

T. Sakamoto, in IEEE Photonics Conference (IPC) (2016), paper WF3.6.

Shioda, T.

T. Hoshi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Conference on Laser and Electro Optics/Pacific Rim (2007), paper ThD2-3.

Suzuki, H.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, Electron. Lett. 37, 967 (2001).
[Crossref]

Tanaka, Y.

T. Hoshi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Conference on Laser and Electro Optics/Pacific Rim (2007), paper ThD2-3.

Teshima, M.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, Electron. Lett. 37, 967 (2001).
[Crossref]

Electron. Lett. (1)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, Electron. Lett. 37, 967 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Sakamoto and A. Chiba, IEEE J. Sel. Top. Quantum Electron. 16, 1140 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Kourogi, T. Enami, and M. Ohtsu, IEEE Photon. Technol. Lett. 6, 214 (1994).
[Crossref]

Opt. Lett. (1)

Other (3)

T. Hoshi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Conference on Laser and Electro Optics/Pacific Rim (2007), paper ThD2-3.

T. Sakamoto, in IEEE Photonics Conference (IPC) (2016), paper WF3.6.

P. Dong, X. Liu, S. Chandrasekhar, L. Buhl, R. Aroca, Y. Baeyens, and Y. Chen, in Optical Fiber Communication Conference (OFC) (2013), paper PDP5C.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a)  2 n -arm multiple-parallel phase modulator for multiple-frequency-spaced optical comb generation; (b) and (c) typical spectra of modulated lights at the arms, (b) #0, (c)  # n ; and (d) flattened spectrum combining the lights’ output from the arms, #0 and # n .
Fig. 2.
Fig. 2. Calculated optical spectra; (a)  2 × , (b)  4 × , and (c)  8 × frequency spacing; offset coefficients, Ξ , are (a)  [ 1,0 , 0,0 , 1,0 , 0,0 ] , (b)  [ 1,0 , 1,0 , 1,0 , 1,0 ] , and (c)  [ 1,1 , 1,1 , 1,1 , 1,1 ] .
Fig. 3.
Fig. 3. Number of comb lines versus modulation depth; red dots: 2 × , blue triangles: 4 × , green inverted triangles: 8 × frequency-spaced combs, and broken curves: theoretical [Eq. (7)].
Fig. 4.
Fig. 4. Conversion efficiency versus modulation depth; red dots: 2 × , blue triangles: 4 × , green inverted triangles: 8 × frequency-spaced combs, and broken curves: theoretical [Eq. (8)]; (a) under the condition of n = 8 and Δ A = Δ θ = 0.39 [rad], and (b) optimal conversion efficiency under the condition of N / n = 1 , and Δ A = Δ θ = π / 4 = 0.79 [rad].

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

a i ( t ) = A i sin ( ω m t + 2 π i l n + θ s 0 ) ,
Δ θ = ± Δ A ,
E out ( t ) = i = 0 n 1 k = ξ i s ^ k e j ( k ω m t + ω 0 t 2 π i k n + ϕ 0 ) ,
E ^ out ( ω ) = l = k = 0 n 1 ξ ^ k s ^ n l + k e j ϕ 0 δ ( ω ( n l + k ) ω m ω 0 ) ,
Ξ = [ 1 , N n l e j 2 π N l n , N n l e j 4 π N l n , , N n l e j 2 π ( n 1 ) N l n ] .
Δ ω = π a A ¯ ω m ,
M = π a A ¯ N .
η k = 1 cos 4 Δ θ 4 π a A ¯ ( N n ) 2 .

Metrics