Abstract

An all-fiber, eye-safe and micro-pulse polarization lidar is demonstrated with a polarization-maintaining structure, incorporating a single superconducting nanowire single-photon detector (SNSPD) at 1.5 μm. The time-division multiplexing technique is used to achieve a calibration-free optical layout. A single piece of detector is used to detect the backscatter signals at two orthogonal states in an alternative sequence. Thus, regular calibration of the two detectors in traditional polarization lidars is avoided. The signal-to-noise ratio of the lidar is guaranteed by using an SNSPD, providing high detection efficiency and low dark count noise. The linear depolarization ratio (LDR) of the urban aerosol is observed horizontally over 48 h in Hefei [N31°50′37′′, E117°15′54′′], when a heavy air pollution is spreading from the north to the central east of China. Phenomena of LDR bursts are detected at a location where a building is under construction. The lidar results show good agreement with the data detected from a sun photometer, a 532 nm visibility lidar, and the weather forecast information.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Long-range micro-pulse aerosol lidar at 1.5  μm with an upconversion single-photon detector

Haiyun Xia, Guoliang Shentu, Mingjia Shangguan, Xiuxiu Xia, Xiaodong Jia, Chong Wang, Jun Zhang, Jason S. Pelc, M. M. Fejer, Qiang Zhang, Xiankang Dou, and Jian-Wei Pan
Opt. Lett. 40(7) 1579-1582 (2015)

Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector

Mingjia Shangguan, Haiyun Xia, Chong Wang, Jiawei Qiu, Shengfu Lin, Xiankang Dou, Qiang Zhang, and Jian-Wei Pan
Opt. Lett. 42(18) 3541-3544 (2017)

1.5 μm polarization coherent lidar incorporating time-division multiplexing

Chong Wang, Haiyun Xia, Mingjia Shangguan, Yunbin Wu, Lu Wang, Lijie Zhao, Jiawei Qiu, and Renjun Zhang
Opt. Express 25(17) 20663-20674 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhang, K. He, and H. Huo, Nature 484, 161 (2012).
    [Crossref]
  2. Z. Zhang, J. Wang, L. Chen, X. Chen, G. Sun, N. Zhong, H. Kan, and W. Lu, Environ. Sci. Pollut. Res. 21, 4236 (2014).
    [Crossref]
  3. Y. Wang, R. Zhang, and R. Saravanan, Nat. Commun. 5, 3098 (2014).
    [Crossref]
  4. H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. Pan, Opt. Lett. 40, 1579 (2015).
    [Crossref]
  5. C. Xie, T. Nishizawa, N. Sugimoto, I. Matsui, and Z. Wang, Appl. Opt. 47, 4945 (2008).
    [Crossref]
  6. H. Xia, M. Shangguan, C. Wang, G. Shentu, J. Qiu, Q. Zhang, X. Dou, and J. Pan, Opt. Lett. 41, 5218 (2016).
    [Crossref]
  7. M. Shangguan, H. Xia, C. Wang, J. Qiu, G. Shentu, Q. Zhang, X. Dou, and J. Pan, Opt. Express 24, 19322 (2016).
    [Crossref]
  8. M. Shangguan, H. Xia, C. Wang, J. Qiu, S. Lin, X. Dou, Q. Zhang, and J. Pan, Opt. Lett. 42, 3541 (2017).
    [Crossref]
  9. K. Sassen, Am. Meteorol. Soc. 72, 1848 (1991).
    [Crossref]
  10. S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, Atmos. Chem. Phys. 13, 2487 (2013).
    [Crossref]
  11. A. Konoshonkin, Z. Wang, A. Borovoi, N. Kustova, D. Liu, and C. Xie, Opt. Express 24, A1257 (2016).
    [Crossref]
  12. B. Liu and Z. Wang, Opt. Express 21, 14583 (2013).
    [Crossref]
  13. H. Di, D. Hua, L. Yan, X. Hou, and X. Wei, Appl. Opt. 54, 389 (2015).
    [Crossref]
  14. C. Wu and F. Yi, J. Geophys. Res. 122, 4479 (2017).
    [Crossref]
  15. W. Kong and F. Yi, J. Geophys. Res. 120, 7928 (2015).
    [Crossref]
  16. J. Spinhirne, M. Hansen, and L. Caudill, Appl. Opt. 21, 1564 (1982).
    [Crossref]
  17. D. Winker, M. Vaughan, A. Omar, Y. Hu, and K. Powell, J. Atmos. Ocean. Tech. 26, 2310 (2009).
    [Crossref]
  18. S. Mayor, S. Spuler, B. Morley, and E. Loew, Opt. Eng. 46, 096201 (2007).
    [Crossref]
  19. C. Flynn, A. Mendoza, Y. Zheng, and S. Mathur, Opt. Express 15, 2785 (2007).
    [Crossref]
  20. P. Dubey, S. Jain, B. Arya, and P. Kulkarni, Rev. Sci. Instrum. 80, 053111 (2009).
    [Crossref]
  21. S. Lisenko, M. Kugeiko, and V. Khomich, Atmos. Ocean. Opt. 29, 288 (2016).
  22. C. Wang, H. Xia, M. Shangguan, Y. Wu, L. Wang, L. Zhao, J. Qiu, and R. Zhang, Opt. Express 25, 20663 (2017).
    [Crossref]
  23. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, Appl. Opt. 46, 7120 (2007).
    [Crossref]
  24. H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, Opt. Express 20, 15286 (2012).
    [Crossref]
  25. D. Bäumer, B. Vogel, S. Versick, R. Rinke, O. Möhler, and M. Schnaiter, Atmos. Environ. 42, 989 (2008).
    [Crossref]

2017 (3)

2016 (4)

2015 (3)

2014 (2)

Z. Zhang, J. Wang, L. Chen, X. Chen, G. Sun, N. Zhong, H. Kan, and W. Lu, Environ. Sci. Pollut. Res. 21, 4236 (2014).
[Crossref]

Y. Wang, R. Zhang, and R. Saravanan, Nat. Commun. 5, 3098 (2014).
[Crossref]

2013 (2)

B. Liu and Z. Wang, Opt. Express 21, 14583 (2013).
[Crossref]

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, Atmos. Chem. Phys. 13, 2487 (2013).
[Crossref]

2012 (2)

2009 (2)

P. Dubey, S. Jain, B. Arya, and P. Kulkarni, Rev. Sci. Instrum. 80, 053111 (2009).
[Crossref]

D. Winker, M. Vaughan, A. Omar, Y. Hu, and K. Powell, J. Atmos. Ocean. Tech. 26, 2310 (2009).
[Crossref]

2008 (2)

C. Xie, T. Nishizawa, N. Sugimoto, I. Matsui, and Z. Wang, Appl. Opt. 47, 4945 (2008).
[Crossref]

D. Bäumer, B. Vogel, S. Versick, R. Rinke, O. Möhler, and M. Schnaiter, Atmos. Environ. 42, 989 (2008).
[Crossref]

2007 (3)

1991 (1)

K. Sassen, Am. Meteorol. Soc. 72, 1848 (1991).
[Crossref]

1982 (1)

Arya, B.

P. Dubey, S. Jain, B. Arya, and P. Kulkarni, Rev. Sci. Instrum. 80, 053111 (2009).
[Crossref]

Bäumer, D.

D. Bäumer, B. Vogel, S. Versick, R. Rinke, O. Möhler, and M. Schnaiter, Atmos. Environ. 42, 989 (2008).
[Crossref]

Borovoi, A.

Caudill, L.

Chen, L.

Z. Zhang, J. Wang, L. Chen, X. Chen, G. Sun, N. Zhong, H. Kan, and W. Lu, Environ. Sci. Pollut. Res. 21, 4236 (2014).
[Crossref]

Chen, X.

Z. Zhang, J. Wang, L. Chen, X. Chen, G. Sun, N. Zhong, H. Kan, and W. Lu, Environ. Sci. Pollut. Res. 21, 4236 (2014).
[Crossref]

Cheng, T.

Di, H.

Dong, J.

Dou, X.

Dubey, P.

P. Dubey, S. Jain, B. Arya, and P. Kulkarni, Rev. Sci. Instrum. 80, 053111 (2009).
[Crossref]

Esselborn, M.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, Atmos. Chem. Phys. 13, 2487 (2013).
[Crossref]

Fejer, M. M.

Fix, A.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, Atmos. Chem. Phys. 13, 2487 (2013).
[Crossref]

Flynn, C.

Groß, S.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, Atmos. Chem. Phys. 13, 2487 (2013).
[Crossref]

Han, Y.

Hansen, M.

He, K.

Q. Zhang, K. He, and H. Huo, Nature 484, 161 (2012).
[Crossref]

Hou, X.

Hu, D.

Hu, Y.

D. Winker, M. Vaughan, A. Omar, Y. Hu, and K. Powell, J. Atmos. Ocean. Tech. 26, 2310 (2009).
[Crossref]

Hua, D.

Huo, H.

Q. Zhang, K. He, and H. Huo, Nature 484, 161 (2012).
[Crossref]

Jain, S.

P. Dubey, S. Jain, B. Arya, and P. Kulkarni, Rev. Sci. Instrum. 80, 053111 (2009).
[Crossref]

Jia, X.

Kan, H.

Z. Zhang, J. Wang, L. Chen, X. Chen, G. Sun, N. Zhong, H. Kan, and W. Lu, Environ. Sci. Pollut. Res. 21, 4236 (2014).
[Crossref]

Khomich, V.

S. Lisenko, M. Kugeiko, and V. Khomich, Atmos. Ocean. Opt. 29, 288 (2016).

Kobayashi, T.

Kong, W.

W. Kong and F. Yi, J. Geophys. Res. 120, 7928 (2015).
[Crossref]

Konoshonkin, A.

Kugeiko, M.

S. Lisenko, M. Kugeiko, and V. Khomich, Atmos. Ocean. Opt. 29, 288 (2016).

Kulkarni, P.

P. Dubey, S. Jain, B. Arya, and P. Kulkarni, Rev. Sci. Instrum. 80, 053111 (2009).
[Crossref]

Kustova, N.

Lin, S.

Lisenko, S.

S. Lisenko, M. Kugeiko, and V. Khomich, Atmos. Ocean. Opt. 29, 288 (2016).

Liu, B.

Liu, D.

Loew, E.

S. Mayor, S. Spuler, B. Morley, and E. Loew, Opt. Eng. 46, 096201 (2007).
[Crossref]

Lu, W.

Z. Zhang, J. Wang, L. Chen, X. Chen, G. Sun, N. Zhong, H. Kan, and W. Lu, Environ. Sci. Pollut. Res. 21, 4236 (2014).
[Crossref]

Mathur, S.

Matsui, I.

Mayor, S.

S. Mayor, S. Spuler, B. Morley, and E. Loew, Opt. Eng. 46, 096201 (2007).
[Crossref]

Mendoza, A.

Möhler, O.

D. Bäumer, B. Vogel, S. Versick, R. Rinke, O. Möhler, and M. Schnaiter, Atmos. Environ. 42, 989 (2008).
[Crossref]

Morley, B.

S. Mayor, S. Spuler, B. Morley, and E. Loew, Opt. Eng. 46, 096201 (2007).
[Crossref]

Nishizawa, T.

Omar, A.

D. Winker, M. Vaughan, A. Omar, Y. Hu, and K. Powell, J. Atmos. Ocean. Tech. 26, 2310 (2009).
[Crossref]

Pan, J.

Pelc, J. S.

Petzold, A.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, Atmos. Chem. Phys. 13, 2487 (2013).
[Crossref]

Powell, K.

D. Winker, M. Vaughan, A. Omar, Y. Hu, and K. Powell, J. Atmos. Ocean. Tech. 26, 2310 (2009).
[Crossref]

Qiu, J.

Rinke, R.

D. Bäumer, B. Vogel, S. Versick, R. Rinke, O. Möhler, and M. Schnaiter, Atmos. Environ. 42, 989 (2008).
[Crossref]

Saravanan, R.

Y. Wang, R. Zhang, and R. Saravanan, Nat. Commun. 5, 3098 (2014).
[Crossref]

Sassen, K.

K. Sassen, Am. Meteorol. Soc. 72, 1848 (1991).
[Crossref]

Schnaiter, M.

D. Bäumer, B. Vogel, S. Versick, R. Rinke, O. Möhler, and M. Schnaiter, Atmos. Environ. 42, 989 (2008).
[Crossref]

Shangguan, M.

Shen, F.

Shentu, G.

Shu, Z.

Spinhirne, J.

Spuler, S.

S. Mayor, S. Spuler, B. Morley, and E. Loew, Opt. Eng. 46, 096201 (2007).
[Crossref]

Sugimoto, N.

Sun, D.

Sun, G.

Z. Zhang, J. Wang, L. Chen, X. Chen, G. Sun, N. Zhong, H. Kan, and W. Lu, Environ. Sci. Pollut. Res. 21, 4236 (2014).
[Crossref]

Vaughan, M.

D. Winker, M. Vaughan, A. Omar, Y. Hu, and K. Powell, J. Atmos. Ocean. Tech. 26, 2310 (2009).
[Crossref]

Versick, S.

D. Bäumer, B. Vogel, S. Versick, R. Rinke, O. Möhler, and M. Schnaiter, Atmos. Environ. 42, 989 (2008).
[Crossref]

Vogel, B.

D. Bäumer, B. Vogel, S. Versick, R. Rinke, O. Möhler, and M. Schnaiter, Atmos. Environ. 42, 989 (2008).
[Crossref]

Wang, C.

Wang, J.

Z. Zhang, J. Wang, L. Chen, X. Chen, G. Sun, N. Zhong, H. Kan, and W. Lu, Environ. Sci. Pollut. Res. 21, 4236 (2014).
[Crossref]

Wang, L.

Wang, Y.

Y. Wang, R. Zhang, and R. Saravanan, Nat. Commun. 5, 3098 (2014).
[Crossref]

Wang, Z.

Wei, X.

Weinzierl, B.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, Atmos. Chem. Phys. 13, 2487 (2013).
[Crossref]

Winker, D.

D. Winker, M. Vaughan, A. Omar, Y. Hu, and K. Powell, J. Atmos. Ocean. Tech. 26, 2310 (2009).
[Crossref]

Wirth, M.

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, Atmos. Chem. Phys. 13, 2487 (2013).
[Crossref]

Wu, C.

C. Wu and F. Yi, J. Geophys. Res. 122, 4479 (2017).
[Crossref]

Wu, Y.

Xia, H.

Xia, X.

Xie, C.

Xue, X.

Yan, L.

Yang, Y.

Yi, F.

C. Wu and F. Yi, J. Geophys. Res. 122, 4479 (2017).
[Crossref]

W. Kong and F. Yi, J. Geophys. Res. 120, 7928 (2015).
[Crossref]

Zhang, J.

Zhang, Q.

Zhang, R.

Zhang, Z.

Z. Zhang, J. Wang, L. Chen, X. Chen, G. Sun, N. Zhong, H. Kan, and W. Lu, Environ. Sci. Pollut. Res. 21, 4236 (2014).
[Crossref]

Zhao, L.

Zheng, Y.

Zhong, N.

Z. Zhang, J. Wang, L. Chen, X. Chen, G. Sun, N. Zhong, H. Kan, and W. Lu, Environ. Sci. Pollut. Res. 21, 4236 (2014).
[Crossref]

Am. Meteorol. Soc. (1)

K. Sassen, Am. Meteorol. Soc. 72, 1848 (1991).
[Crossref]

Appl. Opt. (4)

Atmos. Chem. Phys. (1)

S. Groß, M. Esselborn, B. Weinzierl, M. Wirth, A. Fix, and A. Petzold, Atmos. Chem. Phys. 13, 2487 (2013).
[Crossref]

Atmos. Environ. (1)

D. Bäumer, B. Vogel, S. Versick, R. Rinke, O. Möhler, and M. Schnaiter, Atmos. Environ. 42, 989 (2008).
[Crossref]

Atmos. Ocean. Opt. (1)

S. Lisenko, M. Kugeiko, and V. Khomich, Atmos. Ocean. Opt. 29, 288 (2016).

Environ. Sci. Pollut. Res. (1)

Z. Zhang, J. Wang, L. Chen, X. Chen, G. Sun, N. Zhong, H. Kan, and W. Lu, Environ. Sci. Pollut. Res. 21, 4236 (2014).
[Crossref]

J. Atmos. Ocean. Tech. (1)

D. Winker, M. Vaughan, A. Omar, Y. Hu, and K. Powell, J. Atmos. Ocean. Tech. 26, 2310 (2009).
[Crossref]

J. Geophys. Res. (2)

C. Wu and F. Yi, J. Geophys. Res. 122, 4479 (2017).
[Crossref]

W. Kong and F. Yi, J. Geophys. Res. 120, 7928 (2015).
[Crossref]

Nat. Commun. (1)

Y. Wang, R. Zhang, and R. Saravanan, Nat. Commun. 5, 3098 (2014).
[Crossref]

Nature (1)

Q. Zhang, K. He, and H. Huo, Nature 484, 161 (2012).
[Crossref]

Opt. Eng. (1)

S. Mayor, S. Spuler, B. Morley, and E. Loew, Opt. Eng. 46, 096201 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

P. Dubey, S. Jain, B. Arya, and P. Kulkarni, Rev. Sci. Instrum. 80, 053111 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Optical layout of the polarization lidar. EOM, electro-optic modulator; PG, pulse generator; EDFA, erbium-doped fiber amplifier; PBS, polarization beam splitter; PMF, polarization-maintaining fiber; FA, fiber adaptor; OS, optical switch; FBG, fiber Bragg grating; SNSPD, superconducting nanowire single-photon detector; MCS, multi-channel scaler; P, parallel polarization; S, perpendicular polarization; (b) calibration layout. VOA, variable optical attenuator; L1, first lens as a collimator; L2, second lens as a coupler; HWP, half-wave plate; LP, linear polarizer; BS, polarization-maintaining beam splitter; PM, power meter.
Fig. 2.
Fig. 2. Timing sequence of data acquisition for a single pulse. S channel, perpendicular channel; P channel, parallel channel.
Fig. 3.
Fig. 3. (a) Raw signal of the polarization lidar over 48 h and (b) 48 h continuous measurement results of the LDR.
Fig. 4.
Fig. 4. LDR at the location of (a) 3.44, (b) 3.56, and (c) 3.68 km away from the lidar; the red arrows indicate the moments of the bursts of the LDR. (d) Measurement error of the LDR at 3.56 km. The inset is a photo of the building under construction.
Fig. 5.
Fig. 5. (a)–(c) Volume spectrum detected by a sun photometer in the experiment; (d)–(f) visibility data and photographs of the scene in the experiment; (g)–(i) haze distribution forecast released by the China Meteorological Administration in the experiment. VS, volume spectrum; V, visibility.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N ( R ) = E 0 η q h ν A 0 R 2 ξ ( R ) β k exp [ 2 0 R σ ( r ) d r ] ,
N ( R ) = E 0 η q h ν A 0 R 2 ξ ( R ) β k exp { 0 R [ σ ( r ) + σ ( r ) ] d r } ,
δ ( R ) = k N ( R ) / k N ( R ) = k N ( R ) / N ( R ) ,
k = E P / E P .

Metrics