Abstract

We investigate single-channel and multichannel phase-sensitive amplification (PSA) in a highly nonlinear, CMOS-compatible spiral waveguide with ultralow linear and negligible nonlinear losses. We achieve a net gain of 10.4 dB and an extinction ratio of 24.6 dB for single-channel operation, as well as a 5 dB gain and a 15 dB extinction ratio spanning over a bandwidth of 24 nm for multiple-channel operation. In addition, we derive a simple analytic solution that enables calculating the maximum phase-sensitive gain in any Kerr medium featuring linear and nonlinear losses. These results not only give a clear guideline for designing PSA-based amplifiers but also show that it is possible to implement both optical regeneration and amplification in a single on-chip device.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Pump-degenerate phase-sensitive amplification in chalcogenide waveguides

Yanbing Zhang, Jochen Schröder, Chad Husko, Simon Lefrancois, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton
J. Opt. Soc. Am. B 31(4) 780-787 (2014)

Pump-degenerate phase-sensitive amplification in amorphous silicon waveguides

Hongcheng Sun, Ke-Yao Wang, and Amy C. Foster
Opt. Lett. 42(18) 3590-3593 (2017)

Phase-sensitive amplification in silicon photonic crystal waveguides

Yanbing Zhang, Chad Husko, Jochen Schröder, Simon Lefrancois, Isabella H. Rey, Thomas F. Krauss, and Benjamin J. Eggleton
Opt. Lett. 39(2) 363-366 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription