Abstract

We report on detailed in situ distributed temperature measurements inside a high power fiber amplifier. The deducted thermal load and the transversal mode instability (TMI) threshold of a commercial large mode area fiber with 25 μm core and 400 μm cladding were measured at various seed wavelengths. By matching these results with detailed simulations we show that photodarkening has a negligible impact on the thermal load and, therefore, on the TMI threshold in this fiber.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Estimating modal instability threshold for photonic crystal rod fiber amplifiers

Mette Marie Johansen, Kristian Rymann Hansen, Marko Laurila, Thomas Tanggaard Alkeskjold, and Jesper Lægsgaard
Opt. Express 21(13) 15409-15417 (2013)

Impact of photodarkening on the mode instability threshold

Hans-Jürgen Otto, Norbert Modsching, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann
Opt. Express 23(12) 15265-15277 (2015)

Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening

Cesar Jauregui, Hans-Jürgen Otto, F. Stutzki, J. Limpert, and A. Tünnermann
Opt. Express 23(16) 20203-20218 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Express 19, 13218 (2011).
    [Crossref]
  2. C. Jauregui, T. Eidam, H. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, Opt. Express 20, 12912 (2012).
    [Crossref]
  3. A. Smith and J. Smith, Opt. Express 21, 2606 (2013).
    [Crossref]
  4. B. Ward, C. Robin, and I. Dajani, Opt. Express 20, 11407 (2012).
    [Crossref]
  5. S. Naderi, I. Dajani, T. Madden, and C. Robin, Opt. Express 21, 16111 (2013).
    [Crossref]
  6. H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 23, 15265 (2015).
    [Crossref]
  7. N. Haarlammert, O. de Vries, A. Liem, A. Kliner, T. Peschel, T. Schreiber, R. Eberhardt, and A. Tünnermann, Opt. Express 20, 13274 (2012).
    [Crossref]
  8. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, Photon. Res. 3, 86 (2015).
  9. F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Opt. Express 24, 6011 (2016).
    [Crossref]
  10. C. Jauregui, H. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, Opt. Express 23, 20203 (2015).
    [Crossref]
  11. F. Beier, M. Heinzig, B. Sattler, T. Walbaum, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Proc. SPIE 9728, 97282P (2016).
    [Crossref]
  12. B. Soller, M. Wolfe, and M. Froggatt, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper NWD3.
  13. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, Opt. Express 13, 666 (2005).
    [Crossref]
  14. J. Crank, The Mathematics of Diffusion (Clarendon, 1975).
  15. D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
    [Crossref]
  16. H. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 20, 15710 (2012).
    [Crossref]
  17. M. Johansen, M. Laurila, M. Maack, D. Noordegraaf, C. Jakobsen, T. Alkeskjold, and J. Lægsgaard, Opt. Express 21, 21847 (2013).
    [Crossref]
  18. A. Smith and J. Smith, Opt. Express 19, 10180 (2011).
    [Crossref]

2016 (2)

F. Beier, M. Heinzig, B. Sattler, T. Walbaum, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Proc. SPIE 9728, 97282P (2016).
[Crossref]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Opt. Express 24, 6011 (2016).
[Crossref]

2015 (3)

2013 (3)

2012 (4)

2011 (2)

2005 (1)

2001 (1)

D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
[Crossref]

Alkeskjold, T.

Beier, F.

F. Beier, M. Heinzig, B. Sattler, T. Walbaum, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Proc. SPIE 9728, 97282P (2016).
[Crossref]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Opt. Express 24, 6011 (2016).
[Crossref]

Brown, D. C.

D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
[Crossref]

Crank, J.

J. Crank, The Mathematics of Diffusion (Clarendon, 1975).

Dajani, I.

de Vries, O.

Eberhardt, R.

Eidam, T.

Froggatt, M.

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, Opt. Express 13, 666 (2005).
[Crossref]

B. Soller, M. Wolfe, and M. Froggatt, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper NWD3.

Gifford, D.

Haarlammert, N.

Hein, S.

Heinzig, M.

F. Beier, M. Heinzig, B. Sattler, T. Walbaum, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Proc. SPIE 9728, 97282P (2016).
[Crossref]

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
[Crossref]

Hupel, C.

Ihring, J.

Jakobsen, C.

Jansen, F.

Jauregui, C.

Johansen, M.

Kliner, A.

Kuhn, S.

Lægsgaard, J.

Laurila, M.

Liem, A.

Limpert, J.

Liu, Z.

Ma, P.

Maack, M.

Madden, T.

Modsching, N.

Naderi, S.

Nold, J.

Noordegraaf, D.

Otto, H.

Peschel, T.

Robin, C.

Sattler, B.

F. Beier, M. Heinzig, B. Sattler, T. Walbaum, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Proc. SPIE 9728, 97282P (2016).
[Crossref]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Opt. Express 24, 6011 (2016).
[Crossref]

Schmidt, O.

Schreiber, T.

Smith, A.

Smith, J.

Soller, B.

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, Opt. Express 13, 666 (2005).
[Crossref]

B. Soller, M. Wolfe, and M. Froggatt, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper NWD3.

Stutzki, F.

Tao, R.

Tünnermann, A.

Walbaum, T.

F. Beier, M. Heinzig, B. Sattler, T. Walbaum, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Proc. SPIE 9728, 97282P (2016).
[Crossref]

Wang, X.

Ward, B.

Wirth, C.

Wolfe, M.

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, Opt. Express 13, 666 (2005).
[Crossref]

B. Soller, M. Wolfe, and M. Froggatt, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper NWD3.

Zhou, P.

IEEE J. Quantum Electron. (1)

D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
[Crossref]

Opt. Express (13)

H. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 20, 15710 (2012).
[Crossref]

M. Johansen, M. Laurila, M. Maack, D. Noordegraaf, C. Jakobsen, T. Alkeskjold, and J. Lægsgaard, Opt. Express 21, 21847 (2013).
[Crossref]

A. Smith and J. Smith, Opt. Express 19, 10180 (2011).
[Crossref]

F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Opt. Express 24, 6011 (2016).
[Crossref]

C. Jauregui, H. Otto, F. Stutzki, J. Limpert, and A. Tünnermann, Opt. Express 23, 20203 (2015).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Express 19, 13218 (2011).
[Crossref]

C. Jauregui, T. Eidam, H. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, Opt. Express 20, 12912 (2012).
[Crossref]

A. Smith and J. Smith, Opt. Express 21, 2606 (2013).
[Crossref]

B. Ward, C. Robin, and I. Dajani, Opt. Express 20, 11407 (2012).
[Crossref]

S. Naderi, I. Dajani, T. Madden, and C. Robin, Opt. Express 21, 16111 (2013).
[Crossref]

H. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 23, 15265 (2015).
[Crossref]

N. Haarlammert, O. de Vries, A. Liem, A. Kliner, T. Peschel, T. Schreiber, R. Eberhardt, and A. Tünnermann, Opt. Express 20, 13274 (2012).
[Crossref]

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, Opt. Express 13, 666 (2005).
[Crossref]

Photon. Res. (1)

Proc. SPIE (1)

F. Beier, M. Heinzig, B. Sattler, T. Walbaum, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, Proc. SPIE 9728, 97282P (2016).
[Crossref]

Other (2)

B. Soller, M. Wolfe, and M. Froggatt, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper NWD3.

J. Crank, The Mathematics of Diffusion (Clarendon, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental fiber amplifier setup for temperature measurements. OFDR, optical frequency domain reflectometer; MFA, mode field adapter. Fiber Length: 10 m.
Fig. 2.
Fig. 2. Measured temperature change along the fiber amplifier for various output powers.
Fig. 3.
Fig. 3. Longitudinal distribution of the thermal load in comparison to a result from a rate equation simulation.
Fig. 4.
Fig. 4. Longitudinal thermal load for different seed wavelengths at 1350 W output power in comparison to corresponding rate equation simulations (black).
Fig. 5.
Fig. 5. Thermal load at a constant output power in dependence on the seed wavelength determined from the experiments in comparison to the simulation results for QD heating and QD heating with 8 dB/km additional attenuation.
Fig. 6.
Fig. 6. Standard deviation of the normalized photodiode time traces for two different wavelengths. The white markers represent the average standard deviation.
Fig. 7.
Fig. 7. Transversal mode instability threshold in dependence on the seed wavelength in comparison to the theoretical curve of constant average and maximum thermal load.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

q ( z ) = T ( z ) ¯ R 1 2 · ( 1 8 a 1 + 1 a 2 ln ( R 2 R 1 ) + 1 a 3 ln ( R 3 R 2 ) ) 1 ,

Metrics