Abstract

We recently introduced a new high-resolution diffuse optical imaging technique termed photo-magnetic imaging (PMI), which utilizes magnetic resonance thermometry (MRT) to monitor the 3D temperature distribution induced in a medium illuminated with a near-infrared light. The spatiotemporal temperature distribution due to light absorption can be accurately estimated using a combined photon propagation and heat diffusion model. High-resolution optical absorption images are then obtained by iteratively minimizing the error between the measured and modeled temperature distributions. We have previously demonstrated the feasibility of PMI with experimental studies using tissue simulating agarose phantoms. In this Letter, we present the preliminary ex vivo PMI results obtained with a chicken breast sample. Similarly to the results obtained on phantoms, the reconstructed images reveal that PMI can quantitatively resolve an inclusion with a 3 mm diameter embedded deep in a biological tissue sample with only 10% error. These encouraging results demonstrate the high performance of PMI in ex vivo biological tissue and its potential for in vivo imaging.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time photo-magnetic imaging

Farouk Nouizi, Hakan Erkol, Alex Luk, Mehmet B. Unlu, and Gultekin Gulsen
Biomed. Opt. Express 7(10) 3899-3904 (2016)

Feasibility study of high spatial resolution multimodality fluorescence tomography in ex vivo biological tissue

Tiffany C. Kwong, Farouk Nouizi, Jaedu Cho, Yuting Lin, Uma Sampathkumaran, and Gultekin Gulsen
Appl. Opt. 56(28) 7886-7891 (2017)

Comprehensive analytical model for CW laser induced heat in turbid media

Hakan Erkol, Farouk Nouizi, Alex Luk, Mehmet Burcin Unlu, and Gultekin Gulsen
Opt. Express 23(24) 31069-31084 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription