Abstract

Optical Mach–Zehnder interferometers (MZIs) are useful components in a variety of optical applications, including optical modulation; signal processing; and physical, chemical, and biological sensing. We introduce here a novel, assembly-free all-in-fiber-core MZI, which is directly written with a femtosecond laser. By introducing a positive refractive index-modified zone in half of the fiber core, the original single-mode fiber section is converted into a few-mode fiber section, where a strong coupling between the two lowest-order guided modes is generated, resulting in a well-defined interference spectrum in transmission. This device promises many significant advantages over existing approaches such as ease of fabrication, stability, small insertion loss, robustness extremely broad operating bandwidth, and precise and controllable cavity lengths. These advantages make this device strikingly attractive with the potential for extensive adoption in fiber communications, signal processing, sensors, and laser wavelength control.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact assembly-free vector bend sensor based on all-in-fiber-core Mach–Zehnder interferometer

Pengcheng Chen, Xuewen Shu, and Kate Sugden
Opt. Lett. 43(3) 531-534 (2018)

Micro-fiber Mach–Zehnder interferometer based on ring-core fiber

Xuan Li, Nan-Kuang Chen, Lixia Xi, Hu Zhang, Xiaoguang Zhang, Wenbo Zhang, and Xianfeng Tang
Opt. Express 27(24) 34603-34610 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription