Abstract

A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
High spatial resolution distributed fiber strain sensor based on phase-OFDR

Jiong Li, Jiulin Gan, Zhishen Zhang, Xiaobo Heng, Changsheng Yang, Qi Qian, Shanhui Xu, and Zhongmin Yang
Opt. Express 25(22) 27913-27922 (2017)

Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering

Ali Masoudi, Mohammad Belal, and Trevor P. Newson
Opt. Lett. 38(17) 3312-3315 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. patent5,194,847 (March16, 1993).
  2. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 23, 2081 (2005).
    [Crossref]
  3. K. Y. Song and K. Hotate, IEEE Photon. Technol. Lett. 19, 1928 (2007).
    [Crossref]
  4. A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).
    [Crossref]
  5. A. Masoudi and T. P. Newson, Rev. Sci. Instrum. 87, 011501 (2016).
    [Crossref]
  6. C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, Opt. Commun. 346, 172 (2015).
    [Crossref]
  7. K. De Souza and T. P. Newson, Opt. Express 12, 2656 (2004).
    [Crossref]
  8. G. B. Hocker, Appl. Opt. 18, 1445 (1979).
    [Crossref]
  9. http://doi.org/10.5258/SOTON/401728 .

2016 (1)

A. Masoudi and T. P. Newson, Rev. Sci. Instrum. 87, 011501 (2016).
[Crossref]

2015 (1)

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, Opt. Commun. 346, 172 (2015).
[Crossref]

2013 (1)

A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).
[Crossref]

2007 (1)

K. Y. Song and K. Hotate, IEEE Photon. Technol. Lett. 19, 1928 (2007).
[Crossref]

2005 (1)

2004 (1)

1979 (1)

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).
[Crossref]

Choi, K. N.

De Souza, K.

Hocker, G. B.

Hotate, K.

K. Y. Song and K. Hotate, IEEE Photon. Technol. Lett. 19, 1928 (2007).
[Crossref]

Juarez, J. C.

Lee, C. E.

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. patent5,194,847 (March16, 1993).

Liu, X.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, Opt. Commun. 346, 172 (2015).
[Crossref]

Maier, E. W.

Masoudi, A.

A. Masoudi and T. P. Newson, Rev. Sci. Instrum. 87, 011501 (2016).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).
[Crossref]

Newson, T. P.

A. Masoudi and T. P. Newson, Rev. Sci. Instrum. 87, 011501 (2016).
[Crossref]

A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).
[Crossref]

K. De Souza and T. P. Newson, Opt. Express 12, 2656 (2004).
[Crossref]

Peng, G.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, Opt. Commun. 346, 172 (2015).
[Crossref]

Shang, Y.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, Opt. Commun. 346, 172 (2015).
[Crossref]

Song, K. Y.

K. Y. Song and K. Hotate, IEEE Photon. Technol. Lett. 19, 1928 (2007).
[Crossref]

Taylor, H. F.

J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, J. Lightwave Technol. 23, 2081 (2005).
[Crossref]

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. patent5,194,847 (March16, 1993).

Wang, C.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, Opt. Commun. 346, 172 (2015).
[Crossref]

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, Opt. Commun. 346, 172 (2015).
[Crossref]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

K. Y. Song and K. Hotate, IEEE Photon. Technol. Lett. 19, 1928 (2007).
[Crossref]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).
[Crossref]

Opt. Commun. (1)

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, Opt. Commun. 346, 172 (2015).
[Crossref]

Opt. Express (1)

Rev. Sci. Instrum. (1)

A. Masoudi and T. P. Newson, Rev. Sci. Instrum. 87, 011501 (2016).
[Crossref]

Other (2)

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. patent5,194,847 (March16, 1993).

http://doi.org/10.5258/SOTON/401728 .

Supplementary Material (1)

NameDescription
» Dataset 1       Datasets for all the figures.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup. DFB, distributed feedback; PC, polarization controller; EOM, electro-optic modulator; EDFA, erbium-doped fiber amplifier; AOM, acousto-optic modulator; C, circulator; FBG, fiber Bragg grating; PD, photodetector; DAQ, data acquisition system.
Fig. 2.
Fig. 2. Frequency components present along a 300 m stretch of the sensing fiber between 4500 and 4800 m.
Fig. 3.
Fig. 3. PZT input voltage versus sensor output for 1 kHz sinusoidal signal.
Fig. 4.
Fig. 4. Frequency response of the large PZT measured by the distributed sensor (red data points) and MZI (solid line).
Fig. 5.
Fig. 5. 2D representation of the 3D diagram depicting the output of the sensor. (a) Spatial distribution of strain along the sensing fiber at 1 kHz. (b) Frequency spectrum of the dynamic fluctuations at 4578 m for 1500 Hz signal (blue trace) and 1505 Hz signal (red trace).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δφ()=ϵ[β12βn2[(1μ)p12μp11]],
Δφ()=ϵβ×0.78.
I1=I0[M+Ncos(Δφ())],I2=I0[M+Ncos(Δφ()+2π3)],I3=I0[M+Ncos(Δφ()2π3)],
S=I1+I2+I33=I0M.
I˙1=I0Ncos(Δφ()),I˙2=I0Ncos(Δφ()+2π3),I˙3=I0Ncos(Δφ()2π3).
Δφ=arctan(I˙2I˙3I˙1).
ϵ=Δφ0.78β=Δφ0.78·λ2πn,

Metrics