Abstract

We report a photothermal modulation of Mie scattering (PMMS) method that enables concurrent spatial and spectral discrimination of individual micron-sized particles. This approach provides a direct measurement of the “fingerprint” infrared absorption spectrum with the spatial resolution of visible light. Trace quantities (tens of picograms) of material were deposited onto an infrared-transparent substrate and simultaneously illuminated by a wavelength-tunable intensity-modulated quantum cascade pump laser and a continuous-wave 532 nm probe laser. Absorption of the pump laser by the particles results in direct modulation of the scatter field of the probe laser. The probe light scattered from the interrogated region is imaged onto a visible camera, enabling simultaneous probing of spatially-separated individual particles. By tuning the wavelength of the pump laser, the IR absorption spectrum is obtained. Using this approach, we measured the infrared absorption spectra of individual 3 μm PMMA and silica spheres. Experimental PMMS signal amplitudes agree with modeling using an extended version of the Mie scattering theory for particles on substrates, enabling the prediction of the PMMS signal magnitude based on the material and substrate properties.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Aerosol particle absorption spectroscopy by photothermal modulation of Mie scattered light

A. J. Campillo, C. J. Dodge, and H.-B. Lin
Appl. Opt. 20(18) 3100-3103 (1981)

Photothermal speckle modulation for noncontact materials characterization

Alexander M. Stolyarov, Ryan M. Sullenberger, David R. Crompton, Thomas H. Jeys, Brian G. Saar, and William D. Herzog
Opt. Lett. 40(24) 5786-5789 (2015)

Vibrational mid-infrared photothermal spectroscopy using a fiber laser probe: asymptotic limit in signal-to-baseline contrast

Atcha Totachawattana, Hui Liu, Alket Mertiri, Mi K. Hong, Shyamsunder Erramilli, and Michelle Y. Sander
Opt. Lett. 41(1) 179-182 (2016)

References

  • View by:
  • |
  • |
  • |

  1. E. L. Izake, Forensic Sci. Int. 202, 1 (2010).
    [Crossref]
  2. G. Mogilevsky, L. Borland, M. Brickhouse, and A. W. Fountain, Int. J. Spectrosc. 2012, 1 (2012).
    [Crossref]
  3. J. P. Beauchaine, J. W. Peterman, and R. J. Rosenthal, Microchim. Acta 94, 133 (1988).
    [Crossref]
  4. A. Lanzarotta, Sensors 16, 278 (2016).
    [Crossref]
  5. J. M. Chalmers, H. G. M. Edwards, and M. D. Hargreaves, Infrared and Raman Spectroscopy in Forensic Science (Wiley, 2012).
  6. J. A. Sell, Photothermal Investigations of Solids and Fluids (Academic, 1989).
  7. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Science 297, 1160 (2002).
    [Crossref]
  8. S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, Phys. Rev. Lett. 93, 257402 (2004).
    [Crossref]
  9. M. Selmke, M. Braun, and F. Cichos, ACS Nano 6, 2741 (2012).
    [Crossref]
  10. M. Selmke, A. Heber, M. Braun, and F. Cichos, Appl. Phys. Lett. 105, 013511 (2014).
    [Crossref]
  11. A. J. Capillo, C. J. Dodge, and H.-B. Lin, Appl. Opt. 20, 3100 (1981).
    [Crossref]
  12. H.-B. Lin and A. J. Campillo, Appl. Opt. 24, 422 (1985).
    [Crossref]
  13. S. Arnold and A. B. Pluchino, Appl. Opt. 21, 4194 (1982).
    [Crossref]
  14. S. Arnold, M. Neuman, and A. B. Pluchino, Opt. Lett. 9, 4 (1984).
    [Crossref]
  15. S. Arnold, E. K. Murphy, and G. Sageev, Appl. Opt. 24, 1048 (1985).
    [Crossref]
  16. A. M. Stolyarov, R. M. Sullenberger, D. R. Crompton, T. H. Jeys, B. G. Saar, and W. D. Herzog, Opt. Lett. 40, 5786 (2015).
    [Crossref]
  17. D. S. Moore, S. D. McGrane, and D. J. Funk, Appl. Spectrosc. 58, 491 (2004).
    [Crossref]
  18. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, Appl. Opt. 51, 6789 (2012).
    [Crossref]
  19. G. Videen, J. Opt. Soc. Am. A 8, 483 (1991).
    [Crossref]
  20. R. Furstenberg, C. A. Kendziora, M. Papantonakis, V. Nguyen, and A. McGill, Proc. SPIE 8729, 87290H (2013).
    [Crossref]
  21. A. Ashkin and J. M. Dziedzic, Appl. Opt. 20, 1803 (1981).
    [Crossref]

2016 (1)

A. Lanzarotta, Sensors 16, 278 (2016).
[Crossref]

2015 (1)

2014 (1)

M. Selmke, A. Heber, M. Braun, and F. Cichos, Appl. Phys. Lett. 105, 013511 (2014).
[Crossref]

2013 (1)

R. Furstenberg, C. A. Kendziora, M. Papantonakis, V. Nguyen, and A. McGill, Proc. SPIE 8729, 87290H (2013).
[Crossref]

2012 (3)

G. Mogilevsky, L. Borland, M. Brickhouse, and A. W. Fountain, Int. J. Spectrosc. 2012, 1 (2012).
[Crossref]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, Appl. Opt. 51, 6789 (2012).
[Crossref]

M. Selmke, M. Braun, and F. Cichos, ACS Nano 6, 2741 (2012).
[Crossref]

2010 (1)

E. L. Izake, Forensic Sci. Int. 202, 1 (2010).
[Crossref]

2004 (2)

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

D. S. Moore, S. D. McGrane, and D. J. Funk, Appl. Spectrosc. 58, 491 (2004).
[Crossref]

2002 (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Science 297, 1160 (2002).
[Crossref]

1991 (1)

1988 (1)

J. P. Beauchaine, J. W. Peterman, and R. J. Rosenthal, Microchim. Acta 94, 133 (1988).
[Crossref]

1985 (2)

1984 (1)

1982 (1)

1981 (2)

Aleksandrova, A.

Arnold, S.

Ashkin, A.

Beauchaine, J. P.

J. P. Beauchaine, J. W. Peterman, and R. J. Rosenthal, Microchim. Acta 94, 133 (1988).
[Crossref]

Berciaud, S.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

Blab, G. A.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

Borland, L.

G. Mogilevsky, L. Borland, M. Brickhouse, and A. W. Fountain, Int. J. Spectrosc. 2012, 1 (2012).
[Crossref]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Science 297, 1160 (2002).
[Crossref]

Braun, M.

M. Selmke, A. Heber, M. Braun, and F. Cichos, Appl. Phys. Lett. 105, 013511 (2014).
[Crossref]

M. Selmke, M. Braun, and F. Cichos, ACS Nano 6, 2741 (2012).
[Crossref]

Brickhouse, M.

G. Mogilevsky, L. Borland, M. Brickhouse, and A. W. Fountain, Int. J. Spectrosc. 2012, 1 (2012).
[Crossref]

Campillo, A. J.

Capillo, A. J.

Chalmers, J. M.

J. M. Chalmers, H. G. M. Edwards, and M. D. Hargreaves, Infrared and Raman Spectroscopy in Forensic Science (Wiley, 2012).

Chashnikova, M.

Cichos, F.

M. Selmke, A. Heber, M. Braun, and F. Cichos, Appl. Phys. Lett. 105, 013511 (2014).
[Crossref]

M. Selmke, M. Braun, and F. Cichos, ACS Nano 6, 2741 (2012).
[Crossref]

Cognet, L.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

Crompton, D. R.

Dodge, C. J.

Dziedzic, J. M.

Edwards, H. G. M.

J. M. Chalmers, H. G. M. Edwards, and M. D. Hargreaves, Infrared and Raman Spectroscopy in Forensic Science (Wiley, 2012).

Fedosenko, O.

Flores, Y.

Fountain, A. W.

G. Mogilevsky, L. Borland, M. Brickhouse, and A. W. Fountain, Int. J. Spectrosc. 2012, 1 (2012).
[Crossref]

Funk, D. J.

Furstenberg, R.

R. Furstenberg, C. A. Kendziora, M. Papantonakis, V. Nguyen, and A. McGill, Proc. SPIE 8729, 87290H (2013).
[Crossref]

Gruska, B.

Hargreaves, M. D.

J. M. Chalmers, H. G. M. Edwards, and M. D. Hargreaves, Infrared and Raman Spectroscopy in Forensic Science (Wiley, 2012).

Heber, A.

M. Selmke, A. Heber, M. Braun, and F. Cichos, Appl. Phys. Lett. 105, 013511 (2014).
[Crossref]

Herzog, W. D.

Izake, E. L.

E. L. Izake, Forensic Sci. Int. 202, 1 (2010).
[Crossref]

Jeys, T. H.

Kendziora, C. A.

R. Furstenberg, C. A. Kendziora, M. Papantonakis, V. Nguyen, and A. McGill, Proc. SPIE 8729, 87290H (2013).
[Crossref]

Kischkat, J.

Klinkmüller, M.

Lanzarotta, A.

A. Lanzarotta, Sensors 16, 278 (2016).
[Crossref]

Lin, H.-B.

Lounis, B.

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Science 297, 1160 (2002).
[Crossref]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Science 297, 1160 (2002).
[Crossref]

Machulik, S.

Masselink, W. T.

McGill, A.

R. Furstenberg, C. A. Kendziora, M. Papantonakis, V. Nguyen, and A. McGill, Proc. SPIE 8729, 87290H (2013).
[Crossref]

McGrane, S. D.

Mogilevsky, G.

G. Mogilevsky, L. Borland, M. Brickhouse, and A. W. Fountain, Int. J. Spectrosc. 2012, 1 (2012).
[Crossref]

Monastyrskyi, G.

Moore, D. S.

Murphy, E. K.

Neuman, M.

Nguyen, V.

R. Furstenberg, C. A. Kendziora, M. Papantonakis, V. Nguyen, and A. McGill, Proc. SPIE 8729, 87290H (2013).
[Crossref]

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Science 297, 1160 (2002).
[Crossref]

Papantonakis, M.

R. Furstenberg, C. A. Kendziora, M. Papantonakis, V. Nguyen, and A. McGill, Proc. SPIE 8729, 87290H (2013).
[Crossref]

Peterman, J. W.

J. P. Beauchaine, J. W. Peterman, and R. J. Rosenthal, Microchim. Acta 94, 133 (1988).
[Crossref]

Peters, S.

Pluchino, A. B.

Rosenthal, R. J.

J. P. Beauchaine, J. W. Peterman, and R. J. Rosenthal, Microchim. Acta 94, 133 (1988).
[Crossref]

Saar, B. G.

Sageev, G.

Sell, J. A.

J. A. Sell, Photothermal Investigations of Solids and Fluids (Academic, 1989).

Selmke, M.

M. Selmke, A. Heber, M. Braun, and F. Cichos, Appl. Phys. Lett. 105, 013511 (2014).
[Crossref]

M. Selmke, M. Braun, and F. Cichos, ACS Nano 6, 2741 (2012).
[Crossref]

Semtsiv, M.

Stolyarov, A. M.

Sullenberger, R. M.

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Science 297, 1160 (2002).
[Crossref]

Videen, G.

ACS Nano (1)

M. Selmke, M. Braun, and F. Cichos, ACS Nano 6, 2741 (2012).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

M. Selmke, A. Heber, M. Braun, and F. Cichos, Appl. Phys. Lett. 105, 013511 (2014).
[Crossref]

Appl. Spectrosc. (1)

Forensic Sci. Int. (1)

E. L. Izake, Forensic Sci. Int. 202, 1 (2010).
[Crossref]

Int. J. Spectrosc. (1)

G. Mogilevsky, L. Borland, M. Brickhouse, and A. W. Fountain, Int. J. Spectrosc. 2012, 1 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Microchim. Acta (1)

J. P. Beauchaine, J. W. Peterman, and R. J. Rosenthal, Microchim. Acta 94, 133 (1988).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, Phys. Rev. Lett. 93, 257402 (2004).
[Crossref]

Proc. SPIE (1)

R. Furstenberg, C. A. Kendziora, M. Papantonakis, V. Nguyen, and A. McGill, Proc. SPIE 8729, 87290H (2013).
[Crossref]

Science (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Science 297, 1160 (2002).
[Crossref]

Sensors (1)

A. Lanzarotta, Sensors 16, 278 (2016).
[Crossref]

Other (2)

J. M. Chalmers, H. G. M. Edwards, and M. D. Hargreaves, Infrared and Raman Spectroscopy in Forensic Science (Wiley, 2012).

J. A. Sell, Photothermal Investigations of Solids and Fluids (Academic, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

PMMS measurement scheme. (a) Optical setup. A tunable IR laser (pump) and 532 nm laser (probe) are projected onto the same location on a sample which consists of microspheres deposited onto a ZnSe substrate. A visible sCMOS camera fitted with a 16× microscopic lens images the particles directly. The white LED is used to help locate the particles. (b) Particles appear as bright orbs when illuminated with the probe laser, with little light scattered from the substrate. (c) FFT spectra for each pixel of a series of consecutive images expose the PMMS signal which exists at the pump laser’s modulation frequency (displayed here as a heat map). (d) FFT spectra for each pixel through the image stack are averaged together to produce a final frequency spectrum.

Fig. 2.
Fig. 2.

PMMS for spectroscopic analysis of single particles. PMMS spectra of a single 3 μm PMMA particle [top] and a single 3 μm silica particle [bottom] deposited onto ZnSe substrates are shown in comparison to their respective bulk material extinction coefficients (k).

Fig. 3.
Fig. 3.

Model of our PMMS scheme. (Top): schematic depicting the calculated Mie scatter from a 3 μm PMMA particle on a ZnSe substrate, and how the scattered light is collected by the microscopic lens onto our camera’s sensor. (Bottom): calculations depicting integrated scatter intensity as a function of induced temperature change.

Fig. 4.
Fig. 4.

Extraction of IR absorption spectra from two different species of particles simultaneously. (a) Four particles are visible in the camera frame (backlit with white light), two of which are PMMA and the others silica. (b) PMMS signal heat map (ν=1270  cm1) with multiple particles in the frame. The dotted line represents the diffraction-limited spatial resolution for IR light using equivalent NA optics. The boxes labeled 1 and 2 are the pixels processed to extract (c) a PMMA particle spectrum and (d) a silica particle spectrum.