Abstract

We propose a new scheme for recording an incoherent digital hologram by a single camera shot. The method is based on a motionless, interferenceless, coded aperture correlation holography for 3D imaging. Two random-like coded phase masks (CPMs) are synthesized using the Gerchberg–Saxton algorithm with two different initial random phase profiles. The two CPMs are displayed side by side and used as the system aperture. Light from a pinhole is introduced into the system, and two impulse responses are recorded corresponding to the two CPMs. The two impulse responses are subtracted, and the resulting intensity profile is used as a reconstructing hologram. A library of reconstructing holograms is created corresponding to all possible axial locations. Following the above training stage, an object is placed within the axial limits of the library, and the intensity patterns of a single shot, corresponding to the same two CPMs, are recorded under identical conditions to generate the object hologram. The image of the object at any plane is reconstructed by a cross-correlation between the object hologram and the corresponding reconstructing hologram from the library.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH)

Mani R. Rai, A. Vijayakumar, and Joseph Rosen
Opt. Express 26(14) 18143-18154 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (3)

NameDescription
» Visualization 1       The reconstruction video perspective to different axial planes shown in Visualization 1.
» Visualization 2       The reconstruction video perspective to different axial planes shown in Visualization 2.
» Visualization 3       Video shows the depth perspective of two objects used.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription