Abstract

We demonstrate an asymmetric dual-loop feedback method to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single- and dual-loop feedback. In this Letter, we report optimal suppression of spurious tones by optimizing the delay in the second loop. We observed that asymmetric dual-loop feedback, with large (8×) disparity in loop lengths, gives significant suppression in external-cavity side-modes and produces flat radio frequency (RF) spectra close to the main peak with a low timing jitter, compared to single-loop feedback. Significant reduction in RF linewidth and timing jitter was produced by optimizing the delay time in the second feedback loop. Experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This asymmetric dual-loop feedback scheme provides simple, efficient, and cost-effective stabilization of optoelectronic oscillators based on mode-locked lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimum stabilization of self-mode-locked quantum dash lasers using dual optical feedback with improved tolerance against phase delay mismatch

Haroon Asghar, Ehsan Sooudi, Pramod Kumar, Wei Wei, and John. G. McInerney
Opt. Express 25(14) 15796-15805 (2017)

40 GHz mode-beating with 8 Hz linewidth and 64 fs timing jitter from a synchronized mode-locked quantum-dash laser diode

Ramón Maldonado-Basilio, Sylwester Latkowski, Severine Philippe, and Pascal Landais
Opt. Lett. 36(16) 3142-3144 (2011)

Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at 1.55 µm

J.P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G.H. Duan, and A. Ramdane
Opt. Express 16(22) 17706-17713 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription