Abstract

Chaos-based secure communication can provide a high level of privacy in data transmission. Here, we experimentally demonstrate secure signal transmission over two kinds of multimode fiber (MMF) based on electro-optic intensity chaos. High-quality synchronization is achieved in an electro-optic feedback configuration. Both 5  Gbit/s carrier-less amplitude/phase (CAP-4) modulation and 10  Gbit/s on–off key (OOK) signals are recovered efficiently in electro-optic chaos-based communication systems. Degradations of chaos synchronization and communication system due to mismatch of various hardware keys are also discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
    [Crossref]
  2. Y. Liu, Y. Takiguchi, and P. Davis, Appl. Phys. Lett. 80, 4306 (2002).
    [Crossref]
  3. K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).
    [Crossref]
  4. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
    [Crossref]
  5. K. Petermann, IEEE J. Quantum Electron. 1, 480 (2002).
    [Crossref]
  6. G. Giacomelli, M. Calzavara, and F. T. Arecchi, Opt. Commun. 74, 97 (1989).
    [Crossref]
  7. V. Annovazzi-Lodi, S. Donati, and A. Scire, IEEE J. Quantum Electron. 33, 1449 (1997).
    [Crossref]
  8. J. M. Liu, H. F. Chen, and S. Tang, IEEE J. Quantum Electron. 38, 1184 (2002).
    [Crossref]
  9. K. Kusumoto and J. Ohtsubo, Opt. Lett. 27, 989 (2002).
    [Crossref]
  10. A. Argyris, D. Syvridis, and L. Larger, Nature 438, 343 (2005).
    [Crossref]
  11. K. Ikeda, Opt. Commun. 30, 257 (1979).
    [Crossref]
  12. L. Larger, Philos. Trans. R. Soc. London A 371, 20120464 (2013).
    [Crossref]
  13. J. P. Goedgebuer, P. Levy, and L. Larger, IEEE J. Quantum Electron. 38, 1178 (2002).
    [Crossref]
  14. M. Peil, M. Jacquot, and Y. K. Chembo, Phys. Rev. E 79, 026208 (2009).
    [Crossref]
  15. K. E. Callan, L. Illing, and Z. Gao, Phys. Rev. Lett. 104, 113901 (2010).
    [Crossref]
  16. T. E. Murphy, A. B. Cohen, and B. Ravoori, Philos. Trans. R. Soc. London A 368, 343 (2010).
    [Crossref]
  17. R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, and C. Caspar, J. Lightwave Technol. 28, 569 (2010).
    [Crossref]
  18. P. Sillard, D. Molin, M. Bigot-Astruc, A. Amezcua-Correa, and F. Achten, J. Lightwave Technol. 34, 1672 (2016).
    [Crossref]
  19. X. Tang, L. J. Thng, and X. Li, IEEE Trans. Commun. 51, 12 (2003).
    [Crossref]
  20. L. Tao, Y. Wang, Y. Gao, A. P. Lau, N. Chi, and C. Lu, Opt. Express 21, 6459 (2013).
    [Crossref]
  21. G. Stepniak, J. Lightwave Technol. 32, 2516 (2014).
    [Crossref]

2016 (1)

2014 (1)

2013 (2)

2010 (3)

K. E. Callan, L. Illing, and Z. Gao, Phys. Rev. Lett. 104, 113901 (2010).
[Crossref]

T. E. Murphy, A. B. Cohen, and B. Ravoori, Philos. Trans. R. Soc. London A 368, 343 (2010).
[Crossref]

R. E. Freund, C. A. Bunge, N. N. Ledentsov, D. Molin, and C. Caspar, J. Lightwave Technol. 28, 569 (2010).
[Crossref]

2009 (1)

M. Peil, M. Jacquot, and Y. K. Chembo, Phys. Rev. E 79, 026208 (2009).
[Crossref]

2005 (1)

A. Argyris, D. Syvridis, and L. Larger, Nature 438, 343 (2005).
[Crossref]

2003 (1)

X. Tang, L. J. Thng, and X. Li, IEEE Trans. Commun. 51, 12 (2003).
[Crossref]

2002 (5)

J. P. Goedgebuer, P. Levy, and L. Larger, IEEE J. Quantum Electron. 38, 1178 (2002).
[Crossref]

Y. Liu, Y. Takiguchi, and P. Davis, Appl. Phys. Lett. 80, 4306 (2002).
[Crossref]

K. Petermann, IEEE J. Quantum Electron. 1, 480 (2002).
[Crossref]

J. M. Liu, H. F. Chen, and S. Tang, IEEE J. Quantum Electron. 38, 1184 (2002).
[Crossref]

K. Kusumoto and J. Ohtsubo, Opt. Lett. 27, 989 (2002).
[Crossref]

1997 (1)

V. Annovazzi-Lodi, S. Donati, and A. Scire, IEEE J. Quantum Electron. 33, 1449 (1997).
[Crossref]

1993 (1)

K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).
[Crossref]

1990 (1)

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[Crossref]

1989 (1)

G. Giacomelli, M. Calzavara, and F. T. Arecchi, Opt. Commun. 74, 97 (1989).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[Crossref]

1979 (1)

K. Ikeda, Opt. Commun. 30, 257 (1979).
[Crossref]

Achten, F.

Amezcua-Correa, A.

Annovazzi-Lodi, V.

V. Annovazzi-Lodi, S. Donati, and A. Scire, IEEE J. Quantum Electron. 33, 1449 (1997).
[Crossref]

Arecchi, F. T.

G. Giacomelli, M. Calzavara, and F. T. Arecchi, Opt. Commun. 74, 97 (1989).
[Crossref]

Argyris, A.

A. Argyris, D. Syvridis, and L. Larger, Nature 438, 343 (2005).
[Crossref]

Bigot-Astruc, M.

Bunge, C. A.

Callan, K. E.

K. E. Callan, L. Illing, and Z. Gao, Phys. Rev. Lett. 104, 113901 (2010).
[Crossref]

Calzavara, M.

G. Giacomelli, M. Calzavara, and F. T. Arecchi, Opt. Commun. 74, 97 (1989).
[Crossref]

Carroll, T. L.

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[Crossref]

Caspar, C.

Chembo, Y. K.

M. Peil, M. Jacquot, and Y. K. Chembo, Phys. Rev. E 79, 026208 (2009).
[Crossref]

Chen, H. F.

J. M. Liu, H. F. Chen, and S. Tang, IEEE J. Quantum Electron. 38, 1184 (2002).
[Crossref]

Chi, N.

Cohen, A. B.

T. E. Murphy, A. B. Cohen, and B. Ravoori, Philos. Trans. R. Soc. London A 368, 343 (2010).
[Crossref]

Cuomo, K. M.

K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).
[Crossref]

Davis, P.

Y. Liu, Y. Takiguchi, and P. Davis, Appl. Phys. Lett. 80, 4306 (2002).
[Crossref]

Donati, S.

V. Annovazzi-Lodi, S. Donati, and A. Scire, IEEE J. Quantum Electron. 33, 1449 (1997).
[Crossref]

Freund, R. E.

Gao, Y.

Gao, Z.

K. E. Callan, L. Illing, and Z. Gao, Phys. Rev. Lett. 104, 113901 (2010).
[Crossref]

Giacomelli, G.

G. Giacomelli, M. Calzavara, and F. T. Arecchi, Opt. Commun. 74, 97 (1989).
[Crossref]

Goedgebuer, J. P.

J. P. Goedgebuer, P. Levy, and L. Larger, IEEE J. Quantum Electron. 38, 1178 (2002).
[Crossref]

Ikeda, K.

K. Ikeda, Opt. Commun. 30, 257 (1979).
[Crossref]

Illing, L.

K. E. Callan, L. Illing, and Z. Gao, Phys. Rev. Lett. 104, 113901 (2010).
[Crossref]

Jacquot, M.

M. Peil, M. Jacquot, and Y. K. Chembo, Phys. Rev. E 79, 026208 (2009).
[Crossref]

Kobayashi, K.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[Crossref]

Kusumoto, K.

Lang, R.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[Crossref]

Larger, L.

L. Larger, Philos. Trans. R. Soc. London A 371, 20120464 (2013).
[Crossref]

A. Argyris, D. Syvridis, and L. Larger, Nature 438, 343 (2005).
[Crossref]

J. P. Goedgebuer, P. Levy, and L. Larger, IEEE J. Quantum Electron. 38, 1178 (2002).
[Crossref]

Lau, A. P.

Ledentsov, N. N.

Levy, P.

J. P. Goedgebuer, P. Levy, and L. Larger, IEEE J. Quantum Electron. 38, 1178 (2002).
[Crossref]

Li, X.

X. Tang, L. J. Thng, and X. Li, IEEE Trans. Commun. 51, 12 (2003).
[Crossref]

Liu, J. M.

J. M. Liu, H. F. Chen, and S. Tang, IEEE J. Quantum Electron. 38, 1184 (2002).
[Crossref]

Liu, Y.

Y. Liu, Y. Takiguchi, and P. Davis, Appl. Phys. Lett. 80, 4306 (2002).
[Crossref]

Lu, C.

Molin, D.

Murphy, T. E.

T. E. Murphy, A. B. Cohen, and B. Ravoori, Philos. Trans. R. Soc. London A 368, 343 (2010).
[Crossref]

Ohtsubo, J.

Oppenheim, A. V.

K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).
[Crossref]

Pecora, L. M.

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[Crossref]

Peil, M.

M. Peil, M. Jacquot, and Y. K. Chembo, Phys. Rev. E 79, 026208 (2009).
[Crossref]

Petermann, K.

K. Petermann, IEEE J. Quantum Electron. 1, 480 (2002).
[Crossref]

Ravoori, B.

T. E. Murphy, A. B. Cohen, and B. Ravoori, Philos. Trans. R. Soc. London A 368, 343 (2010).
[Crossref]

Scire, A.

V. Annovazzi-Lodi, S. Donati, and A. Scire, IEEE J. Quantum Electron. 33, 1449 (1997).
[Crossref]

Sillard, P.

Stepniak, G.

Syvridis, D.

A. Argyris, D. Syvridis, and L. Larger, Nature 438, 343 (2005).
[Crossref]

Takiguchi, Y.

Y. Liu, Y. Takiguchi, and P. Davis, Appl. Phys. Lett. 80, 4306 (2002).
[Crossref]

Tang, S.

J. M. Liu, H. F. Chen, and S. Tang, IEEE J. Quantum Electron. 38, 1184 (2002).
[Crossref]

Tang, X.

X. Tang, L. J. Thng, and X. Li, IEEE Trans. Commun. 51, 12 (2003).
[Crossref]

Tao, L.

Thng, L. J.

X. Tang, L. J. Thng, and X. Li, IEEE Trans. Commun. 51, 12 (2003).
[Crossref]

Wang, Y.

Appl. Phys. Lett. (1)

Y. Liu, Y. Takiguchi, and P. Davis, Appl. Phys. Lett. 80, 4306 (2002).
[Crossref]

IEEE J. Quantum Electron. (5)

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347 (1980).
[Crossref]

K. Petermann, IEEE J. Quantum Electron. 1, 480 (2002).
[Crossref]

V. Annovazzi-Lodi, S. Donati, and A. Scire, IEEE J. Quantum Electron. 33, 1449 (1997).
[Crossref]

J. M. Liu, H. F. Chen, and S. Tang, IEEE J. Quantum Electron. 38, 1184 (2002).
[Crossref]

J. P. Goedgebuer, P. Levy, and L. Larger, IEEE J. Quantum Electron. 38, 1178 (2002).
[Crossref]

IEEE Trans. Commun. (1)

X. Tang, L. J. Thng, and X. Li, IEEE Trans. Commun. 51, 12 (2003).
[Crossref]

J. Lightwave Technol. (3)

Nature (1)

A. Argyris, D. Syvridis, and L. Larger, Nature 438, 343 (2005).
[Crossref]

Opt. Commun. (2)

K. Ikeda, Opt. Commun. 30, 257 (1979).
[Crossref]

G. Giacomelli, M. Calzavara, and F. T. Arecchi, Opt. Commun. 74, 97 (1989).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Philos. Trans. R. Soc. London A (2)

T. E. Murphy, A. B. Cohen, and B. Ravoori, Philos. Trans. R. Soc. London A 368, 343 (2010).
[Crossref]

L. Larger, Philos. Trans. R. Soc. London A 371, 20120464 (2013).
[Crossref]

Phys. Rev. E (1)

M. Peil, M. Jacquot, and Y. K. Chembo, Phys. Rev. E 79, 026208 (2009).
[Crossref]

Phys. Rev. Lett. (3)

K. E. Callan, L. Illing, and Z. Gao, Phys. Rev. Lett. 104, 113901 (2010).
[Crossref]

L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990).
[Crossref]

K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Chaos generator based on an electro-optic delayed feedback loop. CW laser, continuous-wave laser; DC bias, direct current bias; MZM, Mach–Zehnder modulator; RF amplifier, radio frequency amplifier; PD, photodetector; (b) principal diagram.

Fig. 2.
Fig. 2.

(a) Chaos temporal waveform; (b) chaos electric spectrum.

Fig. 3.
Fig. 3.

Experimental configuration. PC, polarization controller; L, laser; MZM, Mach–Zehnder modulator; VOA, variable optical attenuator; LPF, low-pass filter; RFA, radio frequency amplifier; PD, photodetector; DF, delay fiber; 2×2 CO, 2×2 50:50 coupler; EDFA, erbium-doped fiber amplifier; OF, optical filter; C0, 1×2 50:50 coupler; VDL, variable delay line; DO, digital oscilloscope; DSP, digital signal process; MMF, multimode fiber.

Fig. 4.
Fig. 4.

(a) Chaos synchronization (back-to-back) when the bandwidth limitation of the oscilloscope is set to 10 GHz. The top blue curve is the chaos waveform at the transmitter, and the bottom red curve is the replication at the receiver. (b) The XY plot of the transmitter output and receiver output.

Fig. 5.
Fig. 5.

(a) Chaos synchronization (back-to-back) when the bandwidth limitation of the oscilloscope is set to 5 GHz and a pair of 4.4 GHz low-pass filters are inserted in the transmitter and receiver. The top blue curve is the chaos waveform at the transmitter, and the bottom red curve is the replication at the receiver. (b) The XY plot of transmitter output and receiver output.

Fig. 6.
Fig. 6.

Measured (a) BER performance and (b) constellations for chaos communications over two kinds of MMF using a 5  Gbit/s CAP-4 signal. Ⓐ back-to-back chaos decoder; Ⓑ 1  km MMF chaos decoder; Ⓒ 2.6  km MMF chaos decoder; Ⓓ back-to-back direct detection; Ⓔ 1   km MMF direct detection; Ⓕ 2.6 km MMF direct detection.

Fig. 7.
Fig. 7.

Measured (a) BER performance and (b) eye diagrams for chaos communications over two kinds of MMF using a 10  Gbit/s OOK signal. Ⓐ back-to-back chaos decoder; Ⓑ 1 km MMF chaos decoder; Ⓒ 2.6 km MMF chaos decoder; Ⓓ back-to-back direct detection; Ⓔ 1 km MMF direct detection; Ⓕ 2.6 km MMF direct detection.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τdx(t)dt+x(t)+1θt0tx(s)ds=πP0SG2VπRFcos2[x(tT)+πVb2Vπ].
edB=10log10(XY2X2).