Abstract

We propose and demonstrate a novel method that uses only three sets of B-scans to accurately determine both the direction and the speed of a transversal flow using speckle decorrelation optical coherence tomography. Our tri-scan method has the advantages of high measurement speed, high spatial resolution, and insensitivity to the flow speed. By introducing error maps, we show that the flow angle inaccuracy can be minimized by choosing the measurement result with a lesser error between results obtained from the x- and y-scans. Finally, we demonstrate that the flow angle measurement accuracy can be further improved for the high-speed flows by increasing the speed of the x- and y-scans.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Determination of flow velocity vector based on Doppler shift and spectrum broadening with optical coherence tomography

Sergey G. Proskurin, Yonghong He, and Ruikang K. Wang
Opt. Lett. 28(14) 1227-1229 (2003)

Three-dimensional, three-vector-component velocimetry of cilia-driven fluid flow using correlation-based approaches in optical coherence tomography

Brendan K. Huang, Ute A. Gamm, Vineet Bhandari, Mustafa K. Khokha, and Michael A. Choma
Biomed. Opt. Express 6(9) 3515-3538 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, Opt. Lett. 22, 64 (1997).
    [Crossref]
  2. A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, Opt. Lett. 35, 1257 (2010).
    [Crossref]
  3. G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, Opt. Express 20, 7694 (2012).
    [Crossref]
  4. J. Tokayer, Y. Jia, A. Dhalla, and D. Huang, Biomed. Opt. Express 4, 1909 (2013).
    [Crossref]
  5. X. Liu, Y. Huang, J. C. Ramellaroman, S. A. Mathews, and J. U. Kang, Opt. Lett. 38, 805 (2013).
    [Crossref]
  6. N. Uribe-Patarroyo, M. Villiger, and B. E. Bouma, Opt. Express 22, 24411 (2014).
    [Crossref]
  7. B. K. Huang and M. A. Choma, Opt. Lett. 39, 521 (2014).
    [Crossref]
  8. N. Uribe-Patarroyo and B. E. Bouma, Opt. Lett. 40, 5518 (2015).
    [Crossref]
  9. J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, Opt. Express 20, 22262 (2012).
    [Crossref]
  10. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, Opt. Lett. 27, 409 (2002).
    [Crossref]
  11. N. Weiss, T. G. van Leeuwen, and J. Kalkman, Phys. Rev. E 88, 042312 (2013).
    [Crossref]
  12. Y. Su, X. S. Yao, Z. Li, Z. Meng, T. Liu, and L. Wang, Biomed. Opt. Express 6, 500 (2015).
    [Crossref]

2015 (2)

2014 (2)

2013 (3)

2012 (2)

2010 (1)

2002 (1)

1997 (1)

Boas, D. A.

Bouma, B. E.

Brecke, K. M.

Chen, Z.

Choi, B.

Choma, M. A.

Dave, D.

Dhalla, A.

Ding, Z.

Huang, B. K.

Huang, D.

Huang, Y.

Jarvi, M.

Jia, W.

Jia, Y.

Jiang, J. Y.

Kalkman, J.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, Phys. Rev. E 88, 042312 (2013).
[Crossref]

Kang, J. U.

Lee, J.

Lee, K.

Leung, M. K.

Li, Z.

Liu, G.

Liu, T.

Liu, X.

Mariampillai, A.

Mathews, S. A.

Meng, Z.

Milner, T. E.

Nelson, J. S.

Ramellaroman, J. C.

Ren, H.

Standish, B. A.

Su, Y.

Sun, V.

Tokayer, J.

Uribe-Patarroyo, N.

van Leeuwen, T. G.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, Phys. Rev. E 88, 042312 (2013).
[Crossref]

Villiger, M.

Vitkin, A.

Wang, L.

Weiss, N.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, Phys. Rev. E 88, 042312 (2013).
[Crossref]

Wilson, B. C.

Wu, W.

Yang, V. X.

Yao, X. S.

Zhao, Y.

Zhu, B.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Configuration of a typical OCT flow angiography. The inset shows a speckle image of intralipid flow. (b) Illustration of the tri-scan method. (c) Variation of an OCT signal caused by moving particles when the OCT beam is scanned at different angles. (d) Normalized autocorrelation results of (c).

Fig. 2.
Fig. 2.

(a) OCT speckle images of a zero-velocity flow with different probe scanning speeds of 0, 10, and 30  mm/s. (b) Calibration fits at depths of 0.00, 0.77, and 1.10 mm.

Fig. 3.
Fig. 3.

Angle error distribution maps when a scan is performed along (a) and (d) the x-axis and (b) and (e) the y-axis. The results of (a) and (b) are combined to produce (c), and the results of (d) and (e) are combined to produce (f), as described in the text. (Top) scanning at 10  mm/s and (bottom) scanning at 15  mm/s. The color represents the magnitude of the error with a scale shown in the color bar.

Fig. 4.
Fig. 4.

(a) and (b) are the depth-resolved |Vc| at different flow directions obtained with beam scans along the x- and y-axes, respectively (only forward scans are used). (c) Flow speed distribution at different directions obtained with a 0-scan. (d) and (e) are the flow angle estimation with the x- and y-scans, respectively. The false symmetrical solutions have been removed. (f) Final angle estimation by combining the results of the x- and y-scans. The circles are the experimental data, and the solid lines are the theoretical simulation, with different colors to represent different flow directions, as indicated in the insets of (a)–(c). Each scan consists of 112 A-lines and is repeated 448 times for averaging. For the x- and y-scans, the scanning speed is 14.3  mm/s with a range of 0.10 mm. Since the probe beam is slightly offset from the tube center with a sufficiently small scan range, the lens effect is negligible.

Tables (1)

Tables Icon

Table 1. Median Angle Estimation Error at Three Different Scanning Speeds

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

|Vf|2+|Vs|22|Vf|·|Vs|cosθ=|Vc|2.
θ=±arccos(|Vs|2+|Vf|2|Vc|22|Vs|·|Vf|).
g(2)(xΔt)=1M(Nx)m=1Mn=1NxIm(n)Im(n+x)12[Im(n)2+Im(n+x)2],
g(2)(τ)=A+Be2vxy2τ2/ωxy2,
vxy=kτ11+b.

Metrics