Abstract

This work explores the frequency conversion and generation of short pulses with an optical parametric oscillator based on micro-structured fibers. Depending on the operation regime, the optical cavity can either behave as a normal-dispersion cavity delivering linearly chirped pulses, which were externally compressed down to only 26 fs, or as a dispersion-managed oscillator, which directly delivered compressed pulses with a pulse duration of only 39 fs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Amplification of ultra-short optical pulses in a two-pump fiber optical parametric chirped pulse amplifier

Arnaud Mussot, Alexandre Kudlinski, Patrick Beaure d’Augères, and Emmanuel Hugonnot
Opt. Express 21(10) 12197-12203 (2013)

Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch

Yi Qiu, Xiaoming Wei, Shuxin Du, Kenneth K. Y. Wong, Kevin K. Tsia, and Yiqing Xu
Opt. Express 26(8) 9565-9572 (2018)

Fiber optical parametric oscillator for sub-50 fs pulse generation: optimization of fiber length

Chenji Gu, Huifeng Wei, Su Chen, Weijun Tong, and Jay E. Sharping
Opt. Lett. 35(20) 3516-3518 (2010)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Goery, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [Crossref]
  2. A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, Opt. Express 19, 13873 (2011).
    [Crossref]
  3. J. H. Lee, J. van Howe, C. Xu, X. Liu, and C. Xu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
    [Crossref]
  4. J. Giordmaine and R. Miller, Phys. Rev. Lett. 14, 973 (1965).
    [Crossref]
  5. H. M. van Driel, Appl. Phys. B 60, 411 (1995).
  6. T. Gottschall, T. Meyer, M. Baumgartl, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, Opt. Express 22, 21921 (2014).
    [Crossref]
  7. S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, and J. Limpert, Opt. Lett. 41, 4332 (2016).
    [Crossref]
  8. F. Emaury, C. J. Saraceno, B. Debord, D. Ghosh, A. Diebold, F. Gèrôme, T. Südmeyer, F. Benabid, and U. Keller, Opt. Lett. 39, 6843 (2014).
    [Crossref]
  9. M. Müller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann, Opt. Lett. 41, 3439 (2016).
    [Crossref]
  10. T. Nubbemeyer, M. Kaumanns, M. Ueffing, M. Gorjan, A. Alismail, H. Fattahi, J. Brons, O. Pronin, H. G. Barros, Z. Major, T. Metzger, D. Sutter, and F. Frausz, Opt. Lett. 42, 1381 (2017).
    [Crossref]
  11. P. Malevich, A. Voronin, A. M. Zheltikov, and A. Baltuška, in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 3–4.
  12. S. Hädrich, T. Gottschall, J. Rothhardt, J. Limpert, and A. Tünnermann, Opt. Express 18, 3158 (2010).
    [Crossref]
  13. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, Opt. Lett. 27, 1675 (2002).
    [Crossref]
  14. C. Gu, H. Wei, S. Chen, W. Tong, and J. E. Sharping, Opt. Lett. 35, 3516 (2010).
    [Crossref]
  15. K. Q. Kieu, N. Nguyen, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, in Conference on Lasers and Electro-Optics (CLEO) (2014), pp. SM1O.7.
  16. T. Gottschall, T. Meyer, M. Schmitt, J. Popp, J. Limpert, and A. Tünnermann, Opt. Express 23, 23968 (2015).
    [Crossref]
  17. J. Rothhardt, S. Demmler, S. Hädrich, T. Peschel, J. Limpert, and A. Tünnermann, Opt. Lett. 38, 763 (2013).
    [Crossref]
  18. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  19. M. Baumgartl, T. Gottschall, J. Abreu-Afonso, A. Díez, T. Meyer, B. Dietzek, M. Rothhardt, J. Popp, J. Limpert, and A. Tünnermann, Opt. Express 20, 21010 (2012).
    [Crossref]
  20. D. R. Herriott and H. J. Schulte, Appl. Opt. 4, 883 (1965).
    [Crossref]
  21. F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, Opt. Express 11, 3550 (2003).
    [Crossref]
  22. W. H. Renninger, A. Chong, and F. W. Wise, Opt. Express 19, 22496 (2011).
    [Crossref]
  23. C. Jauregui, A. Steinmetz, J. Limpert, and A. Tünnermann, Opt. Express 20, 24957 (2012).
    [Crossref]

2017 (1)

2016 (2)

2015 (1)

2014 (2)

2013 (1)

2012 (2)

2011 (2)

2010 (2)

2008 (1)

J. H. Lee, J. van Howe, C. Xu, X. Liu, and C. Xu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[Crossref]

2006 (1)

J. M. Dudley, G. Goery, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

2003 (1)

2002 (1)

1995 (1)

H. M. van Driel, Appl. Phys. B 60, 411 (1995).

1965 (2)

J. Giordmaine and R. Miller, Phys. Rev. Lett. 14, 973 (1965).
[Crossref]

D. R. Herriott and H. J. Schulte, Appl. Opt. 4, 883 (1965).
[Crossref]

Abreu-Afonso, J.

Alismail, A.

Baltuška, A.

P. Malevich, A. Voronin, A. M. Zheltikov, and A. Baltuška, in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 3–4.

Barros, H. G.

Bartelt, H.

Baumgartl, M.

Benabid, F.

Brons, J.

Buckley, J.

Chen, S.

Chong, A.

Coen, S.

J. M. Dudley, G. Goery, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Cormier, E.

Debord, B.

Demmler, S.

Diebold, A.

Dietzek, B.

Díez, A.

Drozdy, A.

Dudley, J. M.

J. M. Dudley, G. Goery, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Eidam, T.

Emaury, F.

Fattahi, H.

Fiorentino, M.

Frausz, F.

Gèrôme, F.

Ghosh, D.

Giordmaine, J.

J. Giordmaine and R. Miller, Phys. Rev. Lett. 14, 973 (1965).
[Crossref]

Goery, G.

J. M. Dudley, G. Goery, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Gorjan, M.

Gottschall, T.

Gowda, R.

K. Q. Kieu, N. Nguyen, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, in Conference on Lasers and Electro-Optics (CLEO) (2014), pp. SM1O.7.

Gu, C.

Hädrich, S.

Hartung, A.

Heidt, A. M.

Herriott, D. R.

Ilday, F.

Jauregui, C.

Jójárt, P.

Kaumanns, M.

Keller, U.

Kienel, M.

Kieu, K. Q.

K. Q. Kieu, N. Nguyen, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, in Conference on Lasers and Electro-Optics (CLEO) (2014), pp. SM1O.7.

Klas, R.

Klenke, A.

Kumar, P.

Kuznetsova, L.

Lee, J. H.

J. H. Lee, J. van Howe, C. Xu, X. Liu, and C. Xu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[Crossref]

Limpert, J.

Liu, X.

J. H. Lee, J. van Howe, C. Xu, X. Liu, and C. Xu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[Crossref]

Major, Z.

Malevich, P.

P. Malevich, A. Voronin, A. M. Zheltikov, and A. Baltuška, in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 3–4.

Metzger, T.

Meyer, T.

Miller, R.

J. Giordmaine and R. Miller, Phys. Rev. Lett. 14, 973 (1965).
[Crossref]

Müller, M.

Nguyen, N.

K. Q. Kieu, N. Nguyen, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, in Conference on Lasers and Electro-Optics (CLEO) (2014), pp. SM1O.7.

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Nubbemeyer, T.

Osvay, K.

Ota, T.

K. Q. Kieu, N. Nguyen, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, in Conference on Lasers and Electro-Optics (CLEO) (2014), pp. SM1O.7.

Peschel, T.

Peyghambarian, N.

K. Q. Kieu, N. Nguyen, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, in Conference on Lasers and Electro-Optics (CLEO) (2014), pp. SM1O.7.

Plötner, M.

Popp, J.

Pronin, O.

Renninger, W. H.

Rohwer, E. G.

Rothhardt, J.

Rothhardt, M.

Saraceno, C. J.

Schmitt, M.

Schulte, H. J.

Sharping, J. E.

Shestaev, E.

Steinmetz, A.

Südmeyer, T.

Sutter, D.

Tong, W.

Tünnermann, A.

Ueffing, M.

Uno, S.

K. Q. Kieu, N. Nguyen, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, in Conference on Lasers and Electro-Optics (CLEO) (2014), pp. SM1O.7.

van Driel, H. M.

H. M. van Driel, Appl. Phys. B 60, 411 (1995).

van Howe, J.

J. H. Lee, J. van Howe, C. Xu, X. Liu, and C. Xu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[Crossref]

Várallyay, Z.

Voronin, A.

P. Malevich, A. Voronin, A. M. Zheltikov, and A. Baltuška, in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 3–4.

Wei, H.

Windeler, R. S.

Wise, F.

Wise, F. W.

Xu, C.

J. H. Lee, J. van Howe, C. Xu, X. Liu, and C. Xu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[Crossref]

J. H. Lee, J. van Howe, C. Xu, X. Liu, and C. Xu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[Crossref]

Zheltikov, A. M.

P. Malevich, A. Voronin, A. M. Zheltikov, and A. Baltuška, in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 3–4.

Appl. Opt. (1)

Appl. Phys. B (1)

H. M. van Driel, Appl. Phys. B 60, 411 (1995).

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. Lee, J. van Howe, C. Xu, X. Liu, and C. Xu, IEEE J. Sel. Top. Quantum Electron. 14, 713 (2008).
[Crossref]

Opt. Express (8)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

J. Giordmaine and R. Miller, Phys. Rev. Lett. 14, 973 (1965).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Goery, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[Crossref]

Other (3)

P. Malevich, A. Voronin, A. M. Zheltikov, and A. Baltuška, in Conference on Lasers and Electro-Optics (CLEO) (2015), pp. 3–4.

K. Q. Kieu, N. Nguyen, R. Gowda, T. Ota, S. Uno, and N. Peyghambarian, in Conference on Lasers and Electro-Optics (CLEO) (2014), pp. SM1O.7.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Comparison of (a) difference frequency generation based on χ(2) and (b) degenerate four-wave mixing based on χ(3) nonlinearities. ωp, ωs, and ωi represent the angular frequency of the pump, signal, and idler electrical fields.
Fig. 2.
Fig. 2. Setup of the fiber-based FOPO pumped by an Yb-based laser and employing a 2 cm piece of photonic crystal fiber (PCF, SC5-PM), Ag, R=150: silver mirror with a radius of 150 mm; GTI1 and 2: chirped mirrors.
Fig. 3.
Fig. 3. (a) Spectrum and (b) autocorrelation traces of the signal pulse at 850 nm with a pulse duration of 26 fs.
Fig. 4.
Fig. 4. (a) Spectrum and (b) autocorrelation traces of the idler pulses at their minimum pulse duration of 39 fs.
Fig. 5.
Fig. 5. (a) Simulated (normalized) spectral (left) and temporal (right) evolution of the pulses at the output of the OPO (which is resonant at 1330 nm, i.e., the idler wavelength) with a final bandwidth of 46 nm and pulse duration of 39 fs. (b) Spectral and temporal evolution of the pulse during a single pass through the conversion fiber.
Fig. 6.
Fig. 6. (a) Simulated (normalized) spectral (left) and temporal (right) evolution of the pulses at the output of the OPO (resonant at 850 nm, i.e., the signal wavelength) with a final bandwidth of 63 nm and an uncompressed pulse duration of 193 fs. (b) Spectral and temporal evolution of the pulse within the conversion fiber.

Metrics