Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Random medium model for cusping of plane waves

Abstract

We introduce a model for a three-dimensional (3D) Schell-type stationary medium whose degree of potential’s correlation satisfies the Fractional Multi-Gaussian (FMG) function. Compared with the scattered profile produced by the Gaussian Schell-model (GSM) medium, the Fractional Multi-Gaussian Schell-model (FMGSM) medium gives rise to a sharp concave intensity apex in the scattered field. This implies that the FMGSM medium also accounts for a larger than Gaussian’s power in the bucket (PIB) in the forward scattering direction, hence being a better candidate than the GSM medium for generating highly-focused (cusp-like) scattered profiles in the far zone. Compared to other mathematical models for the medium’s correlation function which can produce similar cusped scattered profiles the FMG function offers unprecedented tractability being the weighted superposition of Gaussian functions. Our results provide useful applications to energy counter problems and particle manipulation by weakly scattered fields.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Circularly symmetric cusped random beams in free space and atmospheric turbulence

Fei Wang and Olga Korotkova
Opt. Express 25(5) 5057-5067 (2017)

Random sources for cusped beams

Jia Li, Fei Wang, and Olga Korotkova
Opt. Express 24(16) 17779-17791 (2016)

Statistical properties of rectangular cusped random beams propagating in oceanic turbulence

Chuanyi Lu and Daomu Zhao
Appl. Opt. 56(23) 6572-6576 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved