Abstract

In fiber-based optical coherence tomography (OCT), the interference fringes suffer from the fading effect due to misalignment of the light polarization states between the reference and sample arms, resulting in sensitivity degradation and image intensity variation. We theoretically and experimentally analyzed the relation between the misalignment and the fading coefficient. Assuming that the variation of the light polarization in single-mode fiber (SMF) was a random process, we statistically quantified the fading effect. Furthermore, in OCT configuration based on the Michelson interferometer, we reported an interesting observation that the polarization states of light traveling a round-trip in SMF are not evenly distributed on the Poincare sphere. Based on this observation, we demonstrated the existence of an optimal output polarization state of the reference arm to mitigate the fading effect. We demonstrated that in an optimal setup, the statistical average signal-to-noise ratio could be 3.5 dB higher than a setup without proper polarization management.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

27 July 2017: A typographical correction was made to Eq. (4).


OSA Recommended Articles
PMD monitoring in traffic-carrying optical systems and its statistical analysis

Junfeng Jiang, Sathyanarayanan Sundhararajan, Doug Richards, Steve Oliva, and Rongqing Hui
Opt. Express 16(18) 14057-14063 (2008)

Polarization sensitive optical coherence tomography – a review [Invited]

Johannes F. de Boer, Christoph K. Hitzenberger, and Yoshiaki Yasuno
Biomed. Opt. Express 8(3) 1838-1873 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, Biomed. Opt. Express 8, 2405 (2017).
    [Crossref]
  2. J. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
    [Crossref]
  3. M. C. Pierce, M. Shishkov, B. H. Park, N. A. Nassif, B. E. Bouma, G. J. Tearney, and J. F. de Boer, Opt. Express 13, 5739 (2005).
    [Crossref]
  4. A. M. Lee, H. Pahlevaninezhad, V. X. Yang, S. Lam, C. MacAulay, and P. Lane, Opt. Lett. 39, 3638 (2014).
    [Crossref]
  5. G. Tearney, E. Swanson, J. Fujimoto, B. Bouma, S. Boppart, and B. Golubovic, Opt. Lett. 21, 1408 (1996).
    [Crossref]
  6. D. Cui, K. K. Chu, B. Yin, T. N. Ford, C. Hyun, H. M. Leung, J. A. Gardecki, G. M. Solomon, S. E. Birket, L. Liu, S. M. Rowe, and G. J. Tearney, Opt. Lett. 42, 867 (2017).
    [Crossref]
  7. M. O. Van Deventer, J. Lightwave Technol. 11, 1895 (1993).
    [Crossref]
  8. S. Jiao and M. Ruggeri, J. Biomed. Opt. 13, 060503 (2008).
    [Crossref]
  9. M. Villiger, E. Z. Zhang, S. Nadkarni, W.-Y. Oh, B. E. Bouma, and B. J. Vakoc, Opt. Lett. 38, 923 (2013).
    [Crossref]
  10. E. Z. Zhang, W.-Y. Oh, M. L. Villiger, L. Chen, B. E. Bouma, and B. J. Vakoc, Opt. Express 21, 1163 (2013).
    [Crossref]
  11. F. Corsi, A. Galtarossa, and L. Palmieri, J. Lightwave Technol. 16, 1832 (1998).
    [Crossref]
  12. E. Brinkmeyer, Opt. Lett. 6, 575 (1981).
    [Crossref]
  13. A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, IEEE Photon. Technol. Lett. 12, 296 (2000).
    [Crossref]
  14. K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, Opt. Express 19, 552 (2011).
    [Crossref]

2017 (2)

2014 (1)

2013 (2)

2011 (1)

2008 (1)

S. Jiao and M. Ruggeri, J. Biomed. Opt. 13, 060503 (2008).
[Crossref]

2005 (1)

2000 (2)

J. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[Crossref]

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, IEEE Photon. Technol. Lett. 12, 296 (2000).
[Crossref]

1998 (1)

1996 (1)

1993 (1)

M. O. Van Deventer, J. Lightwave Technol. 11, 1895 (1993).
[Crossref]

1981 (1)

Birket, S. E.

Boppart, S.

Bouma, B.

Bouma, B. E.

Brinkmeyer, E.

Chen, L.

Chu, K. K.

Corsi, F.

Cui, D.

Dal Forno, A.

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, IEEE Photon. Technol. Lett. 12, 296 (2000).
[Crossref]

de Boer, J. F.

Ford, T. N.

Fujimoto, J.

Galtarossa, A.

Gardecki, J. A.

Golubovic, B.

Gora, M. J.

Gordon, J.

J. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[Crossref]

Hasan, T.

Hyun, C.

Jiao, S.

S. Jiao and M. Ruggeri, J. Biomed. Opt. 13, 060503 (2008).
[Crossref]

Kim, K. H.

Kogelnik, H.

J. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[Crossref]

Lam, S.

Lane, P.

Lee, A. M.

Lee, B.

Leung, H. M.

Li, J.

Li, X.

Liu, L.

MacAulay, C.

Nadkarni, S.

Nassif, N. A.

Oh, W.-Y.

Pahlevaninezhad, H.

Palmieri, L.

Paradisi, A.

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, IEEE Photon. Technol. Lett. 12, 296 (2000).
[Crossref]

Park, B. H.

Passy, R.

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, IEEE Photon. Technol. Lett. 12, 296 (2000).
[Crossref]

Pierce, M. C.

Rowe, S. M.

Ruggeri, M.

S. Jiao and M. Ruggeri, J. Biomed. Opt. 13, 060503 (2008).
[Crossref]

Shishkov, M.

Solomon, G. M.

Suter, M. J.

Swanson, E.

Tearney, G.

Tearney, G. J.

Tu, Y.

Vakoc, B. J.

Van Deventer, M. O.

M. O. Van Deventer, J. Lightwave Technol. 11, 1895 (1993).
[Crossref]

Villiger, M.

Villiger, M. L.

Von der Weid, J.

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, IEEE Photon. Technol. Lett. 12, 296 (2000).
[Crossref]

Yang, V. X.

Yin, B.

Zhang, E. Z.

Biomed. Opt. Express (1)

IEEE Photon. Technol. Lett. (1)

A. Dal Forno, A. Paradisi, R. Passy, and J. Von der Weid, IEEE Photon. Technol. Lett. 12, 296 (2000).
[Crossref]

J. Biomed. Opt. (1)

S. Jiao and M. Ruggeri, J. Biomed. Opt. 13, 060503 (2008).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Lett. (5)

Proc. Natl. Acad. Sci. USA (1)

J. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of a fiber-coupler based OCT setup. (b) Stokes representation of the misalignment of the reference and sample polarization states on the Poincare sphere. (c)–(e) Three fading cases with different A , where A is the angle between the polarization states of reference s ref and sample s mirror (a mirror) on the Poincare sphere. F x and F y were simulated fringes obtained from two spectrometers (SP X and SP Y), F x + F y was a simulation of fringe if using a single spectrometer (Single SP). SP, spectrometer; PBS, polarizing beam splitter.

Fig. 2.
Fig. 2.

(a) Setup for the measurement of the round-trip SMF polarization randomization. (b) Measured fading coefficient P against cos ( A / 2 ) ; (c) measured DOP distribution. (d) Measured DGD distribution and theoretical Rayleigh PDF. QWP, quarter-wave plate; P1-2, polarizers; BS, beam splitter; PBS, polarizing beam splitter; L1-6, lenses; M1-3, mirrors; SP, spectrometer; PC, polarization controller; SMF, single mode fiber; DOP, degree of polarization; DGD, differential group delay.

Fig. 3.
Fig. 3.

(a) Normalized polarization states distributed on the Poincare sphere of a piece of round-trip SMF. The input polarization state was s input . Most output polarization states were distributed close to s ORPS . (b)–(d) Empirical PDFs based on a numerical simulation and corresponding measured histograms of the fading coefficient P , respectively, when A ref = 0 ° , 90°, and 180°. A ref is the angle between the reference output s ref and s ORPS .

Fig. 4.
Fig. 4.

(a) Beam splitter-based single-spectrometer OCT setup. (b) Measured fading coefficient histograms with optimal and sub-optimal reference output polarization states and an unpolarized light source. PC, polarization controller; L1-4, lenses; P1-2, polarizers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f ( k ) = j ref j sam = ( J out J ref T J ref J in j s ) ( J out J sam T ( F ( k ) I ) J sam J in j s ) = j ref j mirror F ( k ) ,
f ( k ) = P exp ( i ψ ) F ( k ) .
P = cos ( A / 2 ) ,
f upo ( k ) = j ref j sam 2 + ( ( 0 1 1 0 ) j ref * ) ( ( 0 1 1 0 ) j sam * ) 2 = j ref j sam 2 + j sam j ref 2 = R [ j ref j mirror ] F ( k ) ,

Metrics