Abstract

Polarization-based filtering in fiber lasers is well-known to enable spectral tunability and a wide range of dynamical operating states. This effect is rarely exploited in practical systems, however, because optimization of cavity parameters is nontrivial and evolves due to environmental sensitivity. Here, we report a genetic algorithm-based approach, utilizing electronic control of the cavity transfer function, to autonomously achieve broad wavelength tuning and the generation of Q-switched pulses with variable repetition rate and duration. The practicalities and limitations of simultaneous spectral and temporal self-tuning from a simple fiber laser are discussed, paving the way to on-demand laser properties through algorithmic control and machine learning schemes.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser

David G. Winters, Matthew S. Kirchner, Sterling J. Backus, and Henry C. Kapteyn
Opt. Express 25(26) 33216-33225 (2017)

Toward an autosetting mode-locked fiber laser cavity

U. Andral, J. Buguet, R. Si Fodil, F. Amrani, F. Billard, E. Hertz, and Ph. Grelu
J. Opt. Soc. Am. B 33(5) 825-833 (2016)

Gain-switched monolithic fiber laser with ultra-wide tuning range at 2 μm

Xi Cheng, Zhihong Li, Jing Hou, and Zejin Liu
Opt. Express 24(25) 29126-29137 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Humphrey and J. Bowers, IEEE Photon. Technol. Lett. 5, 32 (1993).
    [Crossref]
  2. R. I. Woodward and E. J. R. Kelleher, Appl. Sci. 5, 1440 (2015).
    [Crossref]
  3. Y. Meng, M. Salhi, A. Niang, K. Guesmi, G. Semaan, and F. Sanchez, Opt. Lett. 40, 1153 (2015).
    [Crossref]
  4. Z. Zhang, L. Zhan, K. Xu, J. Wu, and J. Lin, Opt. Lett. 33, 324 (2008).
    [Crossref]
  5. K. Özgören and F. Ö. Ilday, Opt. Lett. 35, 1296 (2010).
    [Crossref]
  6. Z. X. Zhang, Z. W. Xu, and L. Zhang, Opt. Express 20, 26736 (2012).
    [Crossref]
  7. Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, Opt. Express 20, 17797 (2012).
    [Crossref]
  8. D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, Opt. Express 21, 20626 (2013).
    [Crossref]
  9. R. Iegorov, T. Teamir, G. Makey, and F. Ö. Ilday, Optica 3, 1312 (2016).
    [Crossref]
  10. X. Shen, W. Li, M. Yan, and H. Zeng, Opt. Lett. 37, 3426 (2012).
    [Crossref]
  11. T. Hellwig, T. Walbaum, and C. Fallnich, Appl. Phys. B 101, 565 (2010).
    [Crossref]
  12. M. Olivier, M.-D. Gagnon, and M. Piché, Opt. Express 23, 6738 (2015).
    [Crossref]
  13. X. Fu and J. N. Kutz, Opt. Express 21, 6526 (2013).
    [Crossref]
  14. S. L. Brunton, X. Fu, and J. N. Kutz, IEEE J. Sel. Top. Quantum Electron. 20, 464 (2014).
    [Crossref]
  15. U. Andral, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, Optica 2, 275 (2015).
    [Crossref]
  16. U. Andral, J. Buguet, R. S. Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, J. Opt. Soc. Am. B 33, 825 (2016).
    [Crossref]
  17. R. I. Woodward and E. J. R. Kelleher, Sci. Rep. 6, 37616 (2016).
    [Crossref]
  18. W. S. Man, H. Y. Tam, M. S. Demokan, P. K. A. Wai, and D. Y. Tang, J. Opt. Soc. Am. B 17, 28 (2000).
    [Crossref]
  19. M. Melanie, An Introduction to Genetic Algorithms (MIT, 1996).
  20. Z. Piao, L. Zeng, Z. Chen, and C.-S. Kim, Appl. Phys. Lett. 108, 143701 (2016).
    [Crossref]

2016 (4)

2015 (4)

2014 (1)

S. L. Brunton, X. Fu, and J. N. Kutz, IEEE J. Sel. Top. Quantum Electron. 20, 464 (2014).
[Crossref]

2013 (2)

2012 (3)

2010 (2)

T. Hellwig, T. Walbaum, and C. Fallnich, Appl. Phys. B 101, 565 (2010).
[Crossref]

K. Özgören and F. Ö. Ilday, Opt. Lett. 35, 1296 (2010).
[Crossref]

2008 (1)

2000 (1)

1993 (1)

P. Humphrey and J. Bowers, IEEE Photon. Technol. Lett. 5, 32 (1993).
[Crossref]

Amrani, F.

Andral, U.

Arif, R. N.

Billard, F.

Bowers, J.

P. Humphrey and J. Bowers, IEEE Photon. Technol. Lett. 5, 32 (1993).
[Crossref]

Brunton, S. L.

S. L. Brunton, X. Fu, and J. N. Kutz, IEEE J. Sel. Top. Quantum Electron. 20, 464 (2014).
[Crossref]

Buguet, J.

Chen, Z.

Z. Piao, L. Zeng, Z. Chen, and C.-S. Kim, Appl. Phys. Lett. 108, 143701 (2016).
[Crossref]

Demokan, M. S.

Fallnich, C.

T. Hellwig, T. Walbaum, and C. Fallnich, Appl. Phys. B 101, 565 (2010).
[Crossref]

Fedotov, Y. S.

Fodil, R. S.

Fu, X.

S. L. Brunton, X. Fu, and J. N. Kutz, IEEE J. Sel. Top. Quantum Electron. 20, 464 (2014).
[Crossref]

X. Fu and J. N. Kutz, Opt. Express 21, 6526 (2013).
[Crossref]

Gagnon, M.-D.

Grelu, P.

Guesmi, K.

Hellwig, T.

T. Hellwig, T. Walbaum, and C. Fallnich, Appl. Phys. B 101, 565 (2010).
[Crossref]

Hertz, E.

Humphrey, P.

P. Humphrey and J. Bowers, IEEE Photon. Technol. Lett. 5, 32 (1993).
[Crossref]

Iegorov, R.

Ilday, F. Ö.

Ivanenko, A.

Kelleher, E. J. R.

R. I. Woodward and E. J. R. Kelleher, Sci. Rep. 6, 37616 (2016).
[Crossref]

R. I. Woodward and E. J. R. Kelleher, Appl. Sci. 5, 1440 (2015).
[Crossref]

Khripunov, S.

Kim, C.-S.

Z. Piao, L. Zeng, Z. Chen, and C.-S. Kim, Appl. Phys. Lett. 108, 143701 (2016).
[Crossref]

Kobtsev, S.

Kobtsev, S. M.

Kukarin, S.

Kutz, J. N.

S. L. Brunton, X. Fu, and J. N. Kutz, IEEE J. Sel. Top. Quantum Electron. 20, 464 (2014).
[Crossref]

X. Fu and J. N. Kutz, Opt. Express 21, 6526 (2013).
[Crossref]

Li, W.

Lin, J.

Makey, G.

Man, W. S.

Melanie, M.

M. Melanie, An Introduction to Genetic Algorithms (MIT, 1996).

Meng, Y.

Mou, C.

Niang, A.

Olivier, M.

Özgören, K.

Piao, Z.

Z. Piao, L. Zeng, Z. Chen, and C.-S. Kim, Appl. Phys. Lett. 108, 143701 (2016).
[Crossref]

Piché, M.

Radnatarov, D.

Rozhin, A. G.

Salhi, M.

Sanchez, F.

Semaan, G.

Shen, X.

Tam, H. Y.

Tang, D. Y.

Teamir, T.

Turitsyn, S. K.

Wai, P. K. A.

Walbaum, T.

T. Hellwig, T. Walbaum, and C. Fallnich, Appl. Phys. B 101, 565 (2010).
[Crossref]

Woodward, R. I.

R. I. Woodward and E. J. R. Kelleher, Sci. Rep. 6, 37616 (2016).
[Crossref]

R. I. Woodward and E. J. R. Kelleher, Appl. Sci. 5, 1440 (2015).
[Crossref]

Wu, J.

Xu, K.

Xu, Z. W.

Yan, M.

Zeng, H.

Zeng, L.

Z. Piao, L. Zeng, Z. Chen, and C.-S. Kim, Appl. Phys. Lett. 108, 143701 (2016).
[Crossref]

Zhan, L.

Zhang, L.

Zhang, Z.

Zhang, Z. X.

Appl. Phys. B (1)

T. Hellwig, T. Walbaum, and C. Fallnich, Appl. Phys. B 101, 565 (2010).
[Crossref]

Appl. Phys. Lett. (1)

Z. Piao, L. Zeng, Z. Chen, and C.-S. Kim, Appl. Phys. Lett. 108, 143701 (2016).
[Crossref]

Appl. Sci. (1)

R. I. Woodward and E. J. R. Kelleher, Appl. Sci. 5, 1440 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. L. Brunton, X. Fu, and J. N. Kutz, IEEE J. Sel. Top. Quantum Electron. 20, 464 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. Humphrey and J. Bowers, IEEE Photon. Technol. Lett. 5, 32 (1993).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Express (5)

Opt. Lett. (4)

Optica (2)

Sci. Rep. (1)

R. I. Woodward and E. J. R. Kelleher, Sci. Rep. 6, 37616 (2016).
[Crossref]

Other (1)

M. Melanie, An Introduction to Genetic Algorithms (MIT, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Self-tuning laser cavity: (a) schematic; (b) simplified illustration of phase delays arising from fiber birefringence.
Fig. 2.
Fig. 2. GA-based wavelength self-tuning: (a) visualization of spectra for each parameter set in generations 1, 3, and 15 (b) fitness evolution (inset: self-tuned spectra showing tuning range).
Fig. 3.
Fig. 3. Maps of laser characteristics with respect to QWP1 angle (x axis: 0π  rad) and pump power (y axis: 0–0.9 W): (a) wavelength; (b) Q-switched repetition rate; (c) pulse duration; (d) score with targets: 1550 nm and 15 kHz.
Fig. 4.
Fig. 4. Self-tuning characteristics, with targets λ0=1550.0  nm and f0=15  kHz: evolution of: (a) “best” fitness, (b) “average” fitness; (c) optical spectrum, (d) pulse, (e) RF spectrum, (f) optimum achieved fitness with targets: f0=15  kHz and variable λ.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T=cos2θ1cos2θ2+sin2θ1sin2θ2+12sin2θ1sin2θ2cos(ΔϕL+ΔϕNL+ΔϕPC).

Metrics