Abstract

We report on the development of a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser operating at a 1116 nm wavelength. Because the third harmonic is within a few gigahertz of the 372 nm absorption line of iron, this laser system represents an alternative to alexandrite lasers commonly used in iron fluorescence lidars. With our prototype, we achieved a 0.5 W at 372 nm wavelength and a 100 Hz pulse repetition frequency. As a proof of concept, we show iron density measurements, which have been acquired using the novel lidar transmitter.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sodium temperature lidar based on injection seeded Nd:YAG pulse lasers using a sum-frequency generation technique

Takuya D. Kawahara, Tsukasa Kitahara, Fumitoshi Kobayashi, Yasunori Saito, and Akio Nomura
Opt. Express 19(4) 3553-3561 (2011)

Spectroscopy of methane using a Nd:YAG laser at 1.34 μm

J. C. Scott, R. A. M. Maddever, and A. T. Paton
Appl. Opt. 31(6) 815-821 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription