Abstract

We present an interferometric technique for measuring ultrasmall tilts. The information of a tilt in one of the mirrors of a modified Sagnac interferometer is carried by the phase difference between the counter-propagating laser beams. Using a small misalignment of the interferometer, orthogonal to the plane of the tilt, a bimodal (or two-fringe) pattern is induced in the beam’s transverse power distribution. By tracking the mean of such a distribution, using a split detector, a sensitive measurement of the phase is performed. With 1.2 mW of continuous-wave laser power, the technique has a shot noise limited sensitivity of 56  frad/Hz and a measured noise floor of 200  frad/Hz for tilt frequencies above 2 Hz. A tilt of 200 frad corresponds to a differential displacement of 4.0 fm in our setup. The novelty of the protocol relies on signal amplification due to the misalignment and on good performance at low frequencies. A noise floor of about 70  prad/Hz is observed between 2 and 100 mHz.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

1 August 2017: A typographical correction was made to Ref. 6.


OSA Recommended Articles
Anomalous amplification of a homodyne signal via almost-balanced weak values

Wei-Tao Liu, Julián Martínez-Rincón, Gerardo I. Viza, and John C. Howell
Opt. Lett. 42(5) 903-906 (2017)

Precision angle sensor using an optical lever inside a Sagnac interferometer

J. M. Hogan, J. Hammer, S.-W. Chiow, S. Dickerson, D. M. S. Johnson, T. Kovachy, A. Sugarbaker, and M. A. Kasevich
Opt. Lett. 36(9) 1698-1700 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription