Abstract

A dissipative soliton resonance (DSR) mode-locked Er:Yb fiber laser has been used to pump a thulium fiber laser to generate gain-switched pulses at high repetition rates. Here 412 ns long DSR pulses with a center wavelength of around 1.56 μm at a repetition rate of 410 kHz have been fed to a thulium fiber laser, resulting in generation of gain-switched pulses at 1.94 μm. The minimum pulse width achieved was 256 ns with an average power of 4.6 W at 66% slope efficiency. Gain-switched pulses at 520 kHz and 750 kHz were generated through changing the pump pulse repetition rate by modifying the DSR cavity. To the best of our knowledge, this is the first demonstration of a high repetition rate gain-switched thulium fiber laser pumped by a DSR mode-locked fiber laser. As DSR pulses can be generated with high seed average power and energy independent of the operating wavelength regime as well as mode-locking technique, the proposed method can be applied to generate gain-switched pulses at high repetition rates and various wavelengths without the need of any optical or electrical modulators.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dissipative soliton resonance mode-locked double clad Er:Yb laser at different values of anomalous dispersion

Karol Krzempek and Krzysztof Abramski
Opt. Express 24(20) 22379-22386 (2016)

Dissipative soliton resonance mode-locked all-polarization-maintaining double clad Er:Yb fiber laser

Karol Krzempek, Dorota Tomaszewska, and Krzysztof M. Abramski
Opt. Express 25(21) 24853-24860 (2017)

100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system

Junqing Zhao, Deqin Ouyang, Zhijian Zheng, Minqiu Liu, Xikui Ren, Chunbo Li, Shuangchen Ruan, and Weixin Xie
Opt. Express 24(11) 12072-12081 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription