Abstract

In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation

Zahra Vali, Asghar Gholami, Zabih Ghassemlooy, David G. Michelson, Masood Omoomi, and Hamed Noori
J. Opt. Soc. Am. A 34(7) 1187-1193 (2017)

Average capacity for optical wireless communication systems over exponentiated Weibull distribution non-Kolmogorov turbulent channels

Mingjian Cheng, Yixin Zhang, Jie Gao, Fei Wang, and Fengsheng Zhao
Appl. Opt. 53(18) 4011-4017 (2014)

SIMO detection schemes for underwater optical wireless communication under turbulence

Weihao Liu, Zhengyuan Xu, and Liuqing Yang
Photon. Res. 3(3) 48-53 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription