Abstract

A highly efficient mirrorless optical parametric oscillator (MOPO), pumped by narrowband nanosecond pulses at 1064 nm, is demonstrated. The MOPO is based on quasi-phase-matched parametric interaction of counter-propagating photons in 1-mm-thick periodically poled Rb-doped KTiOPO4 crystal with a period of 755 nm. It generates a co-propagating signal at 1740 nm and a counter-propagating idler at 2741 nm, achieving mJ-level output with a total signal-and-idler conversion efficiency of 47%. Both generated waves present narrow spectral bandwidths, thanks to the unique properties of the counter-propagating nonlinear interaction. The high conversion efficiency, inherently narrow spectral width, and simplicity of the optical setup make the MOPO an attractive alternative to conventional co-propagating optical parametric oscillators.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating

Björn Jacobsson, Valdas Pasiskevicius, Fredrik Laurell, Eugeniu Rotari, Vadim Smirnov, and Leonid Glebov
Opt. Lett. 34(4) 449-451 (2009)

Adiabatic optical parametric oscillators: steady-state and dynamical behavior

C. R. Phillips and M. M. Fejer
Opt. Express 20(3) 2466-2482 (2012)

Narrowband and tunable ring optical parametric oscillator with a volume Bragg grating

Björn Jacobsson, Carlota Canalias, Valdas Pasiskevicius, and Fredrik Laurell
Opt. Lett. 32(22) 3278-3280 (2007)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
    [Crossref]
  2. G. Strömqvist, V. Pasiskevicius, and C. Canalias, Appl. Phys. Lett. 98, 051108 (2011).
    [Crossref]
  3. G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, Phys. Rev. A 84, 023825 (2011).
    [Crossref]
  4. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Opt. Lett. 30, 2281 (2005).
    [Crossref]
  5. C. Canalias and V. Pasiskevicius, Nat. Photonics 1, 459 (2007).
    [Crossref]
  6. C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, J. Appl. Phys. 97, 124105 (2005).
    [Crossref]
  7. A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, Opt. Mater. Express 1, 1319 (2011).
    [Crossref]
  8. A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, Sci. Rep. (2017, submitted).
  9. C. Liljestrand, F. Laurell, and C. Canalias, Opt. Express 24, 14682 (2016).
    [Crossref]
  10. R. S. Coetzee, N. Thilmann, A. Zukauskas, C. Canalias, and V. Pasiskevicius, Opt. Mater. Express 5, 2090 (2015).
    [Crossref]
  11. Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32, 1574 (1996).
    [Crossref]
  12. H. Vanherzeele and J. D. Bierlein, Opt. Lett. 17, 982 (1992).
    [Crossref]
  13. G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
    [Crossref]

2016 (1)

2015 (1)

2011 (3)

G. Strömqvist, V. Pasiskevicius, and C. Canalias, Appl. Phys. Lett. 98, 051108 (2011).
[Crossref]

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, Phys. Rev. A 84, 023825 (2011).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, Opt. Mater. Express 1, 1319 (2011).
[Crossref]

2007 (1)

C. Canalias and V. Pasiskevicius, Nat. Photonics 1, 459 (2007).
[Crossref]

2005 (2)

C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, J. Appl. Phys. 97, 124105 (2005).
[Crossref]

B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Opt. Lett. 30, 2281 (2005).
[Crossref]

2003 (1)

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[Crossref]

1996 (1)

Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32, 1574 (1996).
[Crossref]

1992 (1)

1966 (1)

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[Crossref]

Bierlein, J. D.

Canalias, C.

C. Liljestrand, F. Laurell, and C. Canalias, Opt. Express 24, 14682 (2016).
[Crossref]

R. S. Coetzee, N. Thilmann, A. Zukauskas, C. Canalias, and V. Pasiskevicius, Opt. Mater. Express 5, 2090 (2015).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, Opt. Mater. Express 1, 1319 (2011).
[Crossref]

G. Strömqvist, V. Pasiskevicius, and C. Canalias, Appl. Phys. Lett. 98, 051108 (2011).
[Crossref]

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, Phys. Rev. A 84, 023825 (2011).
[Crossref]

C. Canalias and V. Pasiskevicius, Nat. Photonics 1, 459 (2007).
[Crossref]

C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, J. Appl. Phys. 97, 124105 (2005).
[Crossref]

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, Sci. Rep. (2017, submitted).

Cerullo, G.

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[Crossref]

Coetzee, R. S.

De Silvestri, S.

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[Crossref]

Ding, Y. J.

Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32, 1574 (1996).
[Crossref]

Fokine, M.

Harris, S. E.

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[Crossref]

Hirohashi, J.

C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, J. Appl. Phys. 97, 124105 (2005).
[Crossref]

Jacobsson, B.

Khurgin, J. B.

Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32, 1574 (1996).
[Crossref]

Laurell, F.

Liljestrand, C.

C. Liljestrand, F. Laurell, and C. Canalias, Opt. Express 24, 14682 (2016).
[Crossref]

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, Sci. Rep. (2017, submitted).

Montes, C.

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, Phys. Rev. A 84, 023825 (2011).
[Crossref]

Pasiskevicius, V.

R. S. Coetzee, N. Thilmann, A. Zukauskas, C. Canalias, and V. Pasiskevicius, Opt. Mater. Express 5, 2090 (2015).
[Crossref]

G. Strömqvist, V. Pasiskevicius, and C. Canalias, Appl. Phys. Lett. 98, 051108 (2011).
[Crossref]

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, Phys. Rev. A 84, 023825 (2011).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, Opt. Mater. Express 1, 1319 (2011).
[Crossref]

C. Canalias and V. Pasiskevicius, Nat. Photonics 1, 459 (2007).
[Crossref]

C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, J. Appl. Phys. 97, 124105 (2005).
[Crossref]

B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, Opt. Lett. 30, 2281 (2005).
[Crossref]

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, Sci. Rep. (2017, submitted).

Strömqvist, G.

G. Strömqvist, V. Pasiskevicius, and C. Canalias, Appl. Phys. Lett. 98, 051108 (2011).
[Crossref]

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, Phys. Rev. A 84, 023825 (2011).
[Crossref]

A. Zukauskas, G. Strömqvist, V. Pasiskevicius, F. Laurell, M. Fokine, and C. Canalias, Opt. Mater. Express 1, 1319 (2011).
[Crossref]

Thilmann, N.

Tiihonen, M.

Vanherzeele, H.

Viotti, A.-L.

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, Sci. Rep. (2017, submitted).

Zukauskas, A.

Appl. Phys. Lett. (2)

S. E. Harris, Appl. Phys. Lett. 9, 114 (1966).
[Crossref]

G. Strömqvist, V. Pasiskevicius, and C. Canalias, Appl. Phys. Lett. 98, 051108 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. J. Ding and J. B. Khurgin, IEEE J. Quantum Electron. 32, 1574 (1996).
[Crossref]

J. Appl. Phys. (1)

C. Canalias, J. Hirohashi, V. Pasiskevicius, and F. Laurell, J. Appl. Phys. 97, 124105 (2005).
[Crossref]

Nat. Photonics (1)

C. Canalias and V. Pasiskevicius, Nat. Photonics 1, 459 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (2)

Phys. Rev. A (1)

G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, Phys. Rev. A 84, 023825 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[Crossref]

Other (1)

A. Zukauskas, A.-L. Viotti, C. Liljestrand, V. Pasiskevicius, and C. Canalias, Sci. Rep. (2017, submitted).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

PFM images of the domain structure on the non-polar b face of a representative PPRKTP crystal. The images have been scanned at (a) 100 μm, and (b) 900 μm below the patterned face, respectively.

Fig. 2.
Fig. 2.

Schematic illustration of the experimental setup. HW, half-wave plate; POL, polarizer; PR, partially reflecting mirror for the idler wave; L, lens; DM, dichroic mirror.

Fig. 3.
Fig. 3.

(a) MOPO conversion efficiency and pump depletion as a function of pump energy. (b) MOPO signal-conversion efficiency distribution across the optical aperture of the PPRKTP crystal.

Fig. 4.
Fig. 4.

Measured spectra of (a) the pump, (b) forward-propagating signal, and (c) backward-propagating idler waves.

Fig. 5.
Fig. 5.

Far-field intensity profiles of (a) incident pump, (b) signal, and (c) idler beams at a pump energy two times above the MOPO threshold.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

kp=KG+kski,

Metrics