Abstract

We present two techniques for mitigating the effects of temperature drifts in waveguide spatial heterodyne Fourier-transform on-chip spectrometers. In high-resolution devices, large optical path length differences result in an increased sensitivity to temperature variations and impose stringent requirements on the thermal stabilization system. In order to overcome this limitation, here we experimentally demonstrate two new temperature mitigation techniques based on a temperature-sensitive calibration and phase error correction. The spectrometer chip under analysis comprises an array of 32 Mach–Zehnder interferometers fabricated on a silicon-on-insulator platform. The optical path delays are implemented as microphotonic spirals of linearly increasing length up to 3.779 cm, yielding a spectral resolution of 17 pm. We demonstrate that the degradation in retrieved spectra caused by temperature drift is effectively eliminated by temperature-sensitive calibration and phase error correction.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides

Aitor V. Velasco, Pavel Cheben, Przemek J. Bock, André Delâge, Jens H. Schmid, Jean Lapointe, Siegfried Janz, María L. Calvo, Dan-Xia Xu, Mirosław Florjańczyk, and Martin Vachon
Opt. Lett. 38(5) 706-708 (2013)

Optical fiber interferometer array for scanless Fourier-transform spectroscopy

Aitor V. Velasco, Pavel Cheben, Mirosław Florjańczyk, Jens H. Schmid, Przemek J. Bock, Jean Lapointe, André Delâge, Siegfried Janz, Martin Vachon, María L. Calvo, Dan-Xia Xu, and Svatopluk Civiš
Opt. Lett. 38(13) 2262-2264 (2013)

Fabrication of Fourier-transform, integrated-optic spatial heterodyne spectrometer on silica-based planar waveguide

Katsunari Okamoto, Hirotaka Aoyagi, and Kazumasa Takada
Opt. Lett. 35(12) 2103-2105 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription