Abstract

In this Letter, we show that a Shack–Hartmann wavefront sensor can be used for the quantitative measurement of the specimen optical path difference (OPD) in an ordinary incoherent optical microscope, if the spatial coherence of the illumination light in the plane of the specimen is larger than the microscope resolution. To satisfy this condition, the illumination numerical aperture should be smaller than the numerical aperture of the imaging lens. This principle has been successfully applied to build a high-resolution reference-free instrument for the characterization of the OPD of micro-optical components and microscopic biological samples.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase unwrapping with a virtual Hartmann-Shack wavefront sensor

Vyas Akondi, Claas Falldorf, Susana Marcos, and Brian Vohnsen
Opt. Express 23(20) 25425-25439 (2015)

Shack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars

Xiaodong Tao, Ziah Dean, Christopher Chien, Oscar Azucena, Dare Bodington, and Joel Kubby
Opt. Express 21(25) 31282-31292 (2013)

Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor

F. A. Starikov, G. G. Kochemasov, S. M. Kulikov, A. N. Manachinsky, N. V. Maslov, A. V. Ogorodnikov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, F. Yu. Kanev, V. V. Atuchin, and I. S. Soldatenkov
Opt. Lett. 32(16) 2291-2293 (2007)

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, Physica 9, 974 (1942).
    [Crossref]
  2. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2002).
  3. H. Gundlach, Opt. Eng. 32, 3223 (1993).
    [Crossref]
  4. C. Sheppard, Phase Contrast Microscopy (Elsevier, 2005).
  5. M. K. Kim, Digital Holographic Microscopy (Springer, 2011).
  6. J. C. Wyant, Proc. SPIE 4737, 98 (2002).
    [Crossref]
  7. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, Appl. Opt. 42, 1938 (2003).
    [Crossref]
  8. B. Kemper and G. von Bally, Appl. Opt. 47, A52 (2008).
    [Crossref]
  9. R. A. Gonsalves, Opt. Eng. 21, 829 (1982).
    [Crossref]
  10. Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, IEEE Signal Process. Mag. 32, 87 (2015).
    [Crossref]
  11. C. Guo, C. Wei, J. Tan, K. Chen, S. Liu, Q. Wu, and Z. Liu, Opt. Lasers Eng. 89, 2 (2017).
  12. P. Gao, G. Pedrini, C. Zuo, and W. Osten, Opt. Lett. 39, 3615 (2014).
    [Crossref]
  13. H. Gong, P. Pozzi, O. Soloviev, M. Verhaegen, and G. Vdovin, Proc. SPIE 9899, 98992N (2016).
    [Crossref]
  14. H. Lu, J. Chung, X. Ou, and C. Yang, Opt. Express 24, 25345 (2016).
    [Crossref]
  15. R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2015).
  16. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, Opt. Express 17, 13080 (2009).
    [Crossref]
  17. A. B. Parthasarathy, K. K. Chu, T. N. Ford, and J. Mertz, Opt. Lett. 37, 4062 (2012).
    [Crossref]
  18. J. Chanteloup, Appl. Opt. 44, 1559 (2005).
    [Crossref]
  19. H. Gong, O. Soloviev, D. Wilding, P. Pozzi, M. Verhaegen, and G. Vdovin, Opt. Express 24, 13729 (2016).
    [Crossref]
  20. Y. Carmon and E. N. Ribak, Opt. Commun 215, 285 (2003).
    [Crossref]
  21. C. Canovas and E. N. Ribak, Appl. Opt. 46, 1830 (2007).
    [Crossref]
  22. A. Talmi and E. N. Ribak, J. Opt. Soc. Am. A 21, 632 (2004).
    [Crossref]
  23. A. Talmi and E. N. Ribak, J. Opt. Soc. Am. A 23, 288 (2006).
    [Crossref]
  24. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, Appl. Opt. 41, 7437 (2002).
    [Crossref]

2017 (1)

C. Guo, C. Wei, J. Tan, K. Chen, S. Liu, Q. Wu, and Z. Liu, Opt. Lasers Eng. 89, 2 (2017).

2016 (3)

2015 (1)

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, IEEE Signal Process. Mag. 32, 87 (2015).
[Crossref]

2014 (1)

2012 (1)

2009 (1)

2008 (1)

2007 (1)

2006 (1)

2005 (1)

2004 (1)

2003 (2)

2002 (2)

1993 (1)

H. Gundlach, Opt. Eng. 32, 3223 (1993).
[Crossref]

1982 (1)

R. A. Gonsalves, Opt. Eng. 21, 829 (1982).
[Crossref]

1942 (1)

F. Zernike, Physica 9, 974 (1942).
[Crossref]

Bon, P.

Burton, D. R.

Canovas, C.

Carmon, Y.

Y. Carmon and E. N. Ribak, Opt. Commun 215, 285 (2003).
[Crossref]

Chanteloup, J.

Chapman, H. N.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, IEEE Signal Process. Mag. 32, 87 (2015).
[Crossref]

Chen, K.

C. Guo, C. Wei, J. Tan, K. Chen, S. Liu, Q. Wu, and Z. Liu, Opt. Lasers Eng. 89, 2 (2017).

Chu, K. K.

Chung, J.

Cohen, O.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, IEEE Signal Process. Mag. 32, 87 (2015).
[Crossref]

Coppola, G.

De Nicola, S.

Eldar, Y. C.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, IEEE Signal Process. Mag. 32, 87 (2015).
[Crossref]

Ferraro, P.

Finizio, A.

Ford, T. N.

Gao, P.

Gdeisat, M. A.

Gong, H.

H. Gong, O. Soloviev, D. Wilding, P. Pozzi, M. Verhaegen, and G. Vdovin, Opt. Express 24, 13729 (2016).
[Crossref]

H. Gong, P. Pozzi, O. Soloviev, M. Verhaegen, and G. Vdovin, Proc. SPIE 9899, 98992N (2016).
[Crossref]

Gonsalves, R. A.

R. A. Gonsalves, Opt. Eng. 21, 829 (1982).
[Crossref]

Grilli, S.

Gundlach, H.

H. Gundlach, Opt. Eng. 32, 3223 (1993).
[Crossref]

Guo, C.

C. Guo, C. Wei, J. Tan, K. Chen, S. Liu, Q. Wu, and Z. Liu, Opt. Lasers Eng. 89, 2 (2017).

Herráez, M. A.

Kemper, B.

Kim, M. K.

M. K. Kim, Digital Holographic Microscopy (Springer, 2011).

Lalor, M. J.

Liu, S.

C. Guo, C. Wei, J. Tan, K. Chen, S. Liu, Q. Wu, and Z. Liu, Opt. Lasers Eng. 89, 2 (2017).

Liu, Z.

C. Guo, C. Wei, J. Tan, K. Chen, S. Liu, Q. Wu, and Z. Liu, Opt. Lasers Eng. 89, 2 (2017).

Lu, H.

Magro, C.

Maucort, G.

Mertz, J.

Miao, J.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, IEEE Signal Process. Mag. 32, 87 (2015).
[Crossref]

Monneret, S.

Murphy, D. B.

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2002).

Osten, W.

Ou, X.

Parthasarathy, A. B.

Pedrini, G.

Pierattini, G.

Pozzi, P.

H. Gong, P. Pozzi, O. Soloviev, M. Verhaegen, and G. Vdovin, Proc. SPIE 9899, 98992N (2016).
[Crossref]

H. Gong, O. Soloviev, D. Wilding, P. Pozzi, M. Verhaegen, and G. Vdovin, Opt. Express 24, 13729 (2016).
[Crossref]

Ribak, E. N.

Segev, M.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, IEEE Signal Process. Mag. 32, 87 (2015).
[Crossref]

Shechtman, Y.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, IEEE Signal Process. Mag. 32, 87 (2015).
[Crossref]

Sheppard, C.

C. Sheppard, Phase Contrast Microscopy (Elsevier, 2005).

Soloviev, O.

H. Gong, P. Pozzi, O. Soloviev, M. Verhaegen, and G. Vdovin, Proc. SPIE 9899, 98992N (2016).
[Crossref]

H. Gong, O. Soloviev, D. Wilding, P. Pozzi, M. Verhaegen, and G. Vdovin, Opt. Express 24, 13729 (2016).
[Crossref]

Talmi, A.

Tan, J.

C. Guo, C. Wei, J. Tan, K. Chen, S. Liu, Q. Wu, and Z. Liu, Opt. Lasers Eng. 89, 2 (2017).

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2015).

Vdovin, G.

H. Gong, O. Soloviev, D. Wilding, P. Pozzi, M. Verhaegen, and G. Vdovin, Opt. Express 24, 13729 (2016).
[Crossref]

H. Gong, P. Pozzi, O. Soloviev, M. Verhaegen, and G. Vdovin, Proc. SPIE 9899, 98992N (2016).
[Crossref]

Verhaegen, M.

H. Gong, O. Soloviev, D. Wilding, P. Pozzi, M. Verhaegen, and G. Vdovin, Opt. Express 24, 13729 (2016).
[Crossref]

H. Gong, P. Pozzi, O. Soloviev, M. Verhaegen, and G. Vdovin, Proc. SPIE 9899, 98992N (2016).
[Crossref]

von Bally, G.

Wattellier, B.

Wei, C.

C. Guo, C. Wei, J. Tan, K. Chen, S. Liu, Q. Wu, and Z. Liu, Opt. Lasers Eng. 89, 2 (2017).

Wilding, D.

Wu, Q.

C. Guo, C. Wei, J. Tan, K. Chen, S. Liu, Q. Wu, and Z. Liu, Opt. Lasers Eng. 89, 2 (2017).

Wyant, J. C.

J. C. Wyant, Proc. SPIE 4737, 98 (2002).
[Crossref]

Yang, C.

Zernike, F.

F. Zernike, Physica 9, 974 (1942).
[Crossref]

Zuo, C.

Appl. Opt. (5)

IEEE Signal Process. Mag. (1)

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, IEEE Signal Process. Mag. 32, 87 (2015).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Commun (1)

Y. Carmon and E. N. Ribak, Opt. Commun 215, 285 (2003).
[Crossref]

Opt. Eng. (2)

H. Gundlach, Opt. Eng. 32, 3223 (1993).
[Crossref]

R. A. Gonsalves, Opt. Eng. 21, 829 (1982).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

C. Guo, C. Wei, J. Tan, K. Chen, S. Liu, Q. Wu, and Z. Liu, Opt. Lasers Eng. 89, 2 (2017).

Opt. Lett. (2)

Physica (1)

F. Zernike, Physica 9, 974 (1942).
[Crossref]

Proc. SPIE (2)

H. Gong, P. Pozzi, O. Soloviev, M. Verhaegen, and G. Vdovin, Proc. SPIE 9899, 98992N (2016).
[Crossref]

J. C. Wyant, Proc. SPIE 4737, 98 (2002).
[Crossref]

Other (4)

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, 2002).

C. Sheppard, Phase Contrast Microscopy (Elsevier, 2005).

M. K. Kim, Digital Holographic Microscopy (Springer, 2011).

R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Diagram of the SH quantitative OPD microscope.

Fig. 2.
Fig. 2.

(a) Bright field microscope of a lenslet obtained with a 10× microscope objective with A o = 0.25 . (b) 3D OPD map of the MLA reconstructed from a SH sensor with a LED illumination. (c) Thickness map of the lenslet. (d) Center cross section of the microlens reconstructed with LED and laser illumination.

Fig. 3.
Fig. 3.

Measured thickness of the microlens sagitta versus the numerical aperture of illumination A s .

Fig. 4.
Fig. 4.

(a) Bright field image of RBCs, (b) the SH pattern, and (c) the reconstructed OPD map. A ross session of the OPD of the individual blood cell is shown in the inset.

Fig. 5.
Fig. 5.

OPD measurement of a living cheek cell: (left) the bright field intensity image; (right) the OPD map.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

tan ( α ) A o .
tan ( α / M ) A M ,
I SH ( x , y ) = E 2 ( x , y ) E 2 * ( x , y ) { 2 + cos [ 2 π P ( x + F W x ) ] + cos [ 2 π P ( y + F W y ) ] } ,
O ( x , y ) = F 1 { i f x F { O ( x , y ) x } + f y F { O ( x , y ) y } f x 2 + f y 2 } .
P M · λ A o ,

Metrics