Abstract

A hollow-core single-ring photonic crystal fiber (SR-PCF) consists of a ring of capillaries arranged around a central hollow core. Spinning the preform during drawing introduces a continuous helical twist, offering a novel means of controlling the modal properties of hollow-core SR-PCF. For example, twisting geometrically increases the effective axial propagation constant of the LP01-like modes of the capillaries, providing a means of optimizing the suppression of HOMs, which occurs when the LP11-like core mode phase-matches to the LP01-like modes of the surrounding capillaries. (In a straight fiber, optimum suppression occurs for a capillary-to-core diameter ratio d/D=0.682.) Twisting also introduces circular birefringence (to be studied in a future Letter) and has a remarkable effect on the transverse intensity profiles of the higher-order core modes, forcing the two-lobed LP11-like mode in the untwisted fiber to become three-fold symmetric in the twisted case. These phenomena are explored by means of extensive numerical modeling, an analytical model, and a series of experiments. Prism-assisted side-coupling is used to measure the losses, refractive indices, and near-field patterns of individual fiber modes in both the straight and twisted cases.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes

Patrick Uebel, Mehmet C. Günendi, Michael H. Frosz, Goran Ahmed, Nitin N. Edavalath, Jean-Michel Ménard, and Philip St.J. Russell
Opt. Lett. 41(9) 1961-1964 (2016)

Measuring higher-order modes in a low-loss, hollow-core, photonic-bandgap fiber

J.W. Nicholson, L. Meng, J.M. Fini, R.S. Windeler, A. DeSantolo, E. Monberg, F. DiMarcello, Y. Dulashko, M. Hassan, and R. Ortiz
Opt. Express 20(18) 20494-20505 (2012)

Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms

Kunimasa Saitoh, Nikolaos John Florous, Tadashi Murao, and Masanori Koshiba
Opt. Express 14(16) 7342-7352 (2006)

References

  • View by:
  • |
  • |
  • |

  1. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, Opt. Express 21, 22742 (2013).
    [Crossref]
  2. K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. St.J. Russell, Opt. Lett. 38, 3592 (2013).
    [Crossref]
  3. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
    [Crossref]
  4. P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
    [Crossref]
  5. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, Opt. Express 11, 1243 (2003).
    [Crossref]
  6. F. Benabid and P. J. Roberts, J. Mod. Opt. 58, 87 (2011).
    [Crossref]
  7. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, Opt. Lett. 35, 1157 (2010).
    [Crossref]
  8. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, Opt. Express 19, 1441 (2011).
    [Crossref]
  9. F. Yu, W. J. Wadsworth, and J. C. Knight, Opt. Express 20, 11153 (2012).
    [Crossref]
  10. S. Février, B. Beaudou, and P. Viale, Opt. Express 18, 5142 (2010).
    [Crossref]
  11. M. Alharbi, T. Bradley, B. Debord, C. Fourcade-Dutin, D. Ghosh, L. Vincetti, F. Gérôme, and F. Benabid, Opt. Express 21, 28609 (2013).
    [Crossref]
  12. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, Opt. Lett. 41, 1961 (2016).
    [Crossref]
  13. X. Ma, C. Zhu, I.-N. Hu, A. Kaplan, and A. Galvanauskas, Opt. Express 22, 9206 (2014).
    [Crossref]
  14. R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. St.J. Russell, Sci. Adv. 2, e1601421 (2016).
    [Crossref]
  15. P. St.J. Russell, R. Beravat, and G. K. L. Wong, Phil. Trans. R. Soc. A 375, 20150440 (2017).
    [Crossref]
  16. X. M. Xi, G. K. L. Wong, M. H. Frosz, F. Babic, G. Ahmed, X. Jiang, T. G. Euser, and P. St.J. Russell, Optica 1, 165 (2014).
    [Crossref]
  17. M. A. Finger, N. Y. Joly, T. Weiss, and P. St.J. Russell, Opt. Lett. 39, 821 (2014).
    [Crossref]
  18. B. M. Trabold, D. Novoa, A. Abdolvand, and P. St.J. Russell, Opt. Lett. 39, 3736 (2014).
    [Crossref]

2017 (1)

P. St.J. Russell, R. Beravat, and G. K. L. Wong, Phil. Trans. R. Soc. A 375, 20150440 (2017).
[Crossref]

2016 (2)

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. St.J. Russell, Sci. Adv. 2, e1601421 (2016).
[Crossref]

P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. St.J. Russell, Opt. Lett. 41, 1961 (2016).
[Crossref]

2014 (5)

2013 (3)

2012 (1)

2011 (3)

2010 (2)

2003 (1)

Abdolvand, A.

Ahmed, G.

Alharbi, M.

Auguste, J.-L.

Babic, F.

Beaudou, B.

Benabid, F.

Beravat, R.

P. St.J. Russell, R. Beravat, and G. K. L. Wong, Phil. Trans. R. Soc. A 375, 20150440 (2017).
[Crossref]

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. St.J. Russell, Sci. Adv. 2, e1601421 (2016).
[Crossref]

Biriukov, A. S.

Blondy, J.-M.

Bradley, T.

Chang, W.

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St.J. Russell, J. Opt. Soc. Am. B 28, A11 (2011).
[Crossref]

de Sterke, C. M.

Debord, B.

Dianov, E. M.

Dunn, S. C.

Edavalath, N. N.

Eggleton, B. J.

Euser, T. G.

Février, S.

Finger, M. A.

Fourcade-Dutin, C.

Frosz, M. H.

Galvanauskas, A.

Gérôme, F.

Ghosh, D.

Günendi, M. C.

Hand, D. P.

Hölzer, P.

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Hu, I.-N.

Humbert, G.

Jamier, R.

Jaworski, P.

Jiang, X.

Joly, N. Y.

Kaplan, A.

Knight, J. C.

Kosolapov, A. F.

Litchinitser, N. M.

Ma, X.

Maier, R. R. J.

Mak, K. F.

McPhedran, R. C.

Ménard, J.-M.

Nold, J.

Novoa, D.

Plotnichenko, V. G.

Pryamikov, A. D.

Roberts, P. J.

F. Benabid and P. J. Roberts, J. Mod. Opt. 58, 87 (2011).
[Crossref]

Semjonov, S. L.

Shephard, J. D.

St.J. Russell, P.

Trabold, B. M.

Travers, J. C.

Uebel, P.

Usner, B.

Viale, P.

Vincetti, L.

Wadsworth, W. J.

Weiss, T.

White, T. P.

Wong, G. K. L.

P. St.J. Russell, R. Beravat, and G. K. L. Wong, Phil. Trans. R. Soc. A 375, 20150440 (2017).
[Crossref]

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. St.J. Russell, Sci. Adv. 2, e1601421 (2016).
[Crossref]

X. M. Xi, G. K. L. Wong, M. H. Frosz, F. Babic, G. Ahmed, X. Jiang, T. G. Euser, and P. St.J. Russell, Optica 1, 165 (2014).
[Crossref]

Xi, X. M.

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. St.J. Russell, Sci. Adv. 2, e1601421 (2016).
[Crossref]

X. M. Xi, G. K. L. Wong, M. H. Frosz, F. Babic, G. Ahmed, X. Jiang, T. G. Euser, and P. St.J. Russell, Optica 1, 165 (2014).
[Crossref]

Yu, F.

Zhu, C.

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, J. Mod. Opt. 58, 87 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

P. St.J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Optica (1)

Phil. Trans. R. Soc. A (1)

P. St.J. Russell, R. Beravat, and G. K. L. Wong, Phil. Trans. R. Soc. A 375, 20150440 (2017).
[Crossref]

Sci. Adv. (1)

R. Beravat, G. K. L. Wong, M. H. Frosz, X. M. Xi, and P. St.J. Russell, Sci. Adv. 2, e1601421 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Scanning electron micrograph of an SR-PCF with a core diameter D = 44    μm , a capillary diameter d = 23    μm , and a capillary wall thickness t = 0.7    μm . The inter-capillary distance Λ = ( D + d ) / 2 . (b) Schematic of the initial silica SR-PCF stack, consisting of a jacket tube with a hexagonal inner bore and six capillaries held in place at the vertices by a central glass rod inserted at each end of the stack.
Fig. 2.
Fig. 2. Left-hand axis: the value of ξ = d / D that provides optimal HOM suppression, plotted against the parameter q (see the text). The open circles are FEM calculations, and the full curve is a solution of Eq. (3). The agreement is excellent. Right-hand axis: α plotted against q for the experimental parameters. The dot surrounded by a square corresponds to the experimental value ξ = 0.533 , showing that the experimental twist rate (0.505 rad/mm) lies quite close to the optimal value of 0.524 rad/mm for this value of ξ .
Fig. 3.
Fig. 3. HOM losses, measured using prism coupling, plotted versus a modal refractive index for an SR-PCF with d / D = 0.533 . (a) Untwisted case; the labels next to the data-points (red circles) indicate the azimuthal k and radial l orders of the LP k l -like modes. (b) At a twist rate of 0.505 rad/mm. Modes with similar near-field distributions (see Fig. 4) are grouped together. The spacing between successive modes is approximately equal to a multiple of α λ (see the text). The loss of HOMs is increased by at least 12 dB/m in the twisted fiber.
Fig. 4.
Fig. 4. (a) and (b) Measured optical near-field distributions of modes excited by prism-assisted side-coupling at 1064 nm in 60 cm lengths of (a) an untwisted and (b) a twisted ( α = 0.505    rad / mm ) SR-PCF. The mode profiles are superimposed on a scanning electron micrograph of the fiber structure. The corresponding modal losses and refractive indices are plotted in Fig. 3. (c) Numerically modeled Poynting vector distributions showing how the double-lobed LP 11 -like mode of the untwisted fiber evolves into a triple-lobed pattern in the twisted fiber as the twist rate increases. (The values correspond to rad/mm.) The structural parameters are d / D = 0.533 , D / λ = 41.6 , and t = 700    nm .
Fig. 5.
Fig. 5. (a) Top view of the capillaries, spaced by Λ = ( D + d ) / 2 and slanted at angle ϕ α Λ to the fiber axis. (b) Refractive index diagram of the grating. The axial component of refractive index at P is n z n prism + m α λ (see the text).
Fig. 6.
Fig. 6. Wavelength dependence of the loss (left-hand axis) for the LP 01 -like core and capillary modes, and the LP 11 -like core mode, calculated by FEM for the actual fiber structure, including variations in the diameter and position of each capillary, for a twist rate of 0.505 rad/mm. The corresponding theoretical figure-of-merit for suppression of the LP 11 mode, FOM 11 (see the text), is the under-shaded curve. The experimental values of loss at 1064 nm are marked with circles, and the corresponding FOM 11 is marked by a square.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n 01 1 + α 2 ( d + D ) 2 / 4 = ( m ) α λ / ( 2 π ) + n 11 1 + α 2 γ 2 D 2 ,
n 01 = 1 ( u 01 λ / ( π f 01 d ) ) 2 and n 11 = 1 ( u 11 λ / ( π f 11 D ) ) 2 ,
q 2 q ( 2 f 01 ( m ) u 01 ( ( ξ + 1 ) 2 4 γ 2 ) ) ( ξ 0 2 ξ 2 ξ 2 ξ 0 2 ( ( ξ + 1 ) 2 4 γ 2 ) ) = 0 ,
q = π    α f 01 D 2 / ( 2 λ    u 01 ) ,
n az m = m λ Λ cos θ n prism sin ϕ m λ Λ n prism sin ϕ ,
n z n prism + m α λ ,

Metrics