Abstract

A differential pulse-width pair (DPP) Brillouin distributed fiber sensor is implemented to achieve centimetric spatial resolution over distances of several kilometers. The presented scheme uses a scanning method in which the spectral separation between the two probe sidebands is kept constant, while the optical frequency of the pump is swept to scan the Brillouin spectral response. Experimental results show that this method avoids detrimental temporal distortions of the pump pulses, which in a standard implementation prevent the DPP method from operating over mid-to-long distances. Such a novel scanning procedure allows the resolving, for the first time in pure time-domain Brillouin sensors, of 1,000,000 sensing points, i.e., 1 cm spatial resolution over 10 km in a conventional acquisition time.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cyclic coding for Brillouin optical time-domain analyzers using probe dithering

Haritz Iribas, Alayn Loayssa, Florian Sauser, Miguel Llera, and Sébastien Le Floch
Opt. Express 25(8) 8787-8800 (2017)

Novel scanning method for distortion-free BOTDA measurements

Alejandro Dominguez-Lopez, Zhisheng Yang, Marcelo A. Soto, Xabier Angulo-Vinuesa, Sonia Martin-Lopez, Luc Thevenaz, and Miguel Gonzalez-Herraez
Opt. Express 24(10) 10188-10204 (2016)

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

Yongkang Dong, Liang Chen, and Xiaoyi Bao
Appl. Opt. 49(27) 5020-5025 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
    [Crossref]
  2. L. Thévenaz, S. F. Mafang, and J. Lin, Opt. Express 21, 14017 (2013).
    [Crossref]
  3. A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, Opt. Express 24, 10188 (2016).
    [Crossref]
  4. M. A. Soto and L. Thévenaz, Opt. Express 21, 31347 (2013).
    [Crossref]
  5. K. Hotate and T. Hasegawa, IEICE Trans. Electron. E83-C, 405 (2000).
  6. A. Denisov, M. A. Soto, and L. Thevenaz, Proc. SPIE 9157, 9157D2 (2014).
    [Crossref]
  7. Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, J. Lightwave Technol. 34, 4421 (2016).
    [Crossref]
  8. Y. H. Kim, K. Lee, and K. Y. Song, Opt. Express 23, 33241 (2015).
    [Crossref]
  9. A. Denisov, M. A. Soto, and L. Thevenaz, Light Sci. Appl. 5, e16074 (2016).
    [Crossref]
  10. W. Li, X. Bao, Y. Li, and L. Chen, Opt. Express 16, 21616 (2008).
    [Crossref]
  11. Y. Dong, H. Zhang, L. Chen, and X. Bao, Appl. Opt. 51, 1229 (2012).
    [Crossref]
  12. S. M. Foaleng, M. Tur, J.-C. Beugnot, and L. Thévenaz, J. Lightwave Technol. 28, 2993 (2010).
    [Crossref]
  13. M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, Opt. Express 20, 6860 (2012).
    [Crossref]
  14. A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, M. Gonzalez-Herraez, and L. Thevenaz, Proc. SPIE 9916, 991635 (2016).
    [Crossref]
  15. R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, IEEE Photon. J. 7, 1 (2015).
    [Crossref]

2016 (4)

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, Opt. Express 24, 10188 (2016).
[Crossref]

Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, J. Lightwave Technol. 34, 4421 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thevenaz, Light Sci. Appl. 5, e16074 (2016).
[Crossref]

A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, M. Gonzalez-Herraez, and L. Thevenaz, Proc. SPIE 9916, 991635 (2016).
[Crossref]

2015 (2)

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Y. H. Kim, K. Lee, and K. Y. Song, Opt. Express 23, 33241 (2015).
[Crossref]

2014 (1)

A. Denisov, M. A. Soto, and L. Thevenaz, Proc. SPIE 9157, 9157D2 (2014).
[Crossref]

2013 (2)

2012 (2)

2010 (1)

2008 (1)

2000 (1)

K. Hotate and T. Hasegawa, IEICE Trans. Electron. E83-C, 405 (2000).

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

Angulo-Vinuesa, X.

Antman, Y.

Bao, X.

Beugnot, J.-C.

Bolognini, G.

Chen, L.

Denisov, A.

A. Denisov, M. A. Soto, and L. Thevenaz, Light Sci. Appl. 5, e16074 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thevenaz, Proc. SPIE 9157, 9157D2 (2014).
[Crossref]

Di Pasquale, F.

Dominguez-Lopez, A.

A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, M. Gonzalez-Herraez, and L. Thevenaz, Proc. SPIE 9916, 991635 (2016).
[Crossref]

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, Opt. Express 24, 10188 (2016).
[Crossref]

Dong, Y.

Foaleng, S. M.

Gonzalez-Herraez, M.

A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, M. Gonzalez-Herraez, and L. Thevenaz, Proc. SPIE 9916, 991635 (2016).
[Crossref]

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, Opt. Express 24, 10188 (2016).
[Crossref]

Hasegawa, T.

K. Hotate and T. Hasegawa, IEICE Trans. Electron. E83-C, 405 (2000).

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

Hotate, K.

K. Hotate and T. Hasegawa, IEICE Trans. Electron. E83-C, 405 (2000).

Kim, Y. H.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

Lee, K.

Levanon, N.

Li, W.

Li, Y.

Lin, J.

Loayssa, A.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, IEEE Photon. J. 7, 1 (2015).
[Crossref]

London, Y.

López-Higuera, J. M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Mafang, S. F.

Martin-Lopez, S.

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, Opt. Express 24, 10188 (2016).
[Crossref]

A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, M. Gonzalez-Herraez, and L. Thevenaz, Proc. SPIE 9916, 991635 (2016).
[Crossref]

Mirapeix, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Preter, E.

Ruiz-Lombera, R.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Sagues, M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

Song, K. Y.

Soto, M. A.

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, Opt. Express 24, 10188 (2016).
[Crossref]

A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, M. Gonzalez-Herraez, and L. Thevenaz, Proc. SPIE 9916, 991635 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thevenaz, Light Sci. Appl. 5, e16074 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thevenaz, Proc. SPIE 9157, 9157D2 (2014).
[Crossref]

M. A. Soto and L. Thévenaz, Opt. Express 21, 31347 (2013).
[Crossref]

M. A. Soto, M. Taki, G. Bolognini, and F. Di Pasquale, Opt. Express 20, 6860 (2012).
[Crossref]

Taki, M.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, J. Lightwave Technol. 13, 1296 (1995).
[Crossref]

Thevenaz, L.

A. Denisov, M. A. Soto, and L. Thevenaz, Light Sci. Appl. 5, e16074 (2016).
[Crossref]

A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, M. Gonzalez-Herraez, and L. Thevenaz, Proc. SPIE 9916, 991635 (2016).
[Crossref]

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, Opt. Express 24, 10188 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thevenaz, Proc. SPIE 9157, 9157D2 (2014).
[Crossref]

Thévenaz, L.

Tur, M.

Urricelqui, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, IEEE Photon. J. 7, 1 (2015).
[Crossref]

Yang, Z.

Zadok, A.

Zhang, H.

Appl. Opt. (1)

IEEE Photon. J. (1)

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, IEEE Photon. J. 7, 1 (2015).
[Crossref]

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, IEICE Trans. Electron. E83-C, 405 (2000).

J. Lightwave Technol. (3)

Light Sci. Appl. (1)

A. Denisov, M. A. Soto, and L. Thevenaz, Light Sci. Appl. 5, e16074 (2016).
[Crossref]

Opt. Express (6)

Proc. SPIE (2)

A. Denisov, M. A. Soto, and L. Thevenaz, Proc. SPIE 9157, 9157D2 (2014).
[Crossref]

A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, M. Gonzalez-Herraez, and L. Thevenaz, Proc. SPIE 9916, 991635 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustration of the proposed scanning technique, where the probe wave remains frequency-fixed at ±νB, inducing no distortion over the pump pulse. The pump frequency is swept to properly scan Brillouin gain and loss curves.

Fig. 2.
Fig. 2.

Experimental setup. LD, laser diode; EOM, electro-optical modulator; AWG, arbitrary waveform generator; EDFA, erbium-doped fiber amplifier; VOA, variable optical attenuator; P.Synth, polarization synthesizer; ES, electrical switch; PS, polarization switch; FUT, fiber-under-test.

Fig. 3.
Fig. 3.

DPP working principle, presenting the long and short pulses (black and blue, respectively), and the resulting differential pulse (red). (a) DPP on the conventional BOTDA sweeping method, showing a distortion in the pulses for a +25  MHz pump–probe frequency detuning (non-distorted 26.3 ns pulse is shown in green dashed lines for reference) and a null differential pulse. (b) DPP-BOTDA using the proposed scanning procedure: both long pulses remain well-shaped, while the differential pulse shows a correct shape and the expected 100 ps width.

Fig. 4.
Fig. 4.

(a) DPP-BOTDA trace along the 10 km fiber using a differential pulse of 100 ps (1 cm resolution) at the peak frequency of 10.855 GHz; (b) BFS evolution at the far end of the fiber showing a 3 cm hot-spot presenting a BFS offset by ~30 MHz with respect to the unheated fiber.